EconPapers    
Economics at your fingertips  
 

GIS-based analysis of landslides susceptibility mapping: a case study of Lushoto district, north-eastern Tanzania

Michael Makonyo () and Zahor Zahor
Additional contact information
Michael Makonyo: The University of Dodoma
Zahor Zahor: University of Dar es Salaam

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2023, vol. 118, issue 2, No 10, 1085-1115

Abstract: Abstract Landslides are becoming increasingly widespread, claiming tens of thousands of fatalities, hundreds of thousands of injuries, and billions of dollars in economic losses each year. Thus, studies for geographically locating landslides, vulnerable areas have been increasingly relevant in recent decades. This research is aimed at integrating Geographical Information Systems (GIS) and Remote Sensing (RS) techniques to delineate landslides susceptibility areas of Lushoto district, Tanzania. RS assisted in providing remote datasets including; Digital Elevation Models (DEMs), Landsat 8 OLI imageries, and past spatially distributed landslides coordinate with the use of a handheld Global Position System (GPS) receiver, while various GIS analysis techniques were used in the preparation and analysis of landslides influencing factors hence, generating landslides susceptibility areas index values. However, rainfall, slope angle, elevation, soil type, lithology, proximity to roads, rivers, faults, and Normalized Difference Vegetation Index (NDVI) factors were found to have a direct influence on the occurrence of landslides in the study area. These factors were evaluated, weighted, and ranked using Analytical Hierarchy Process (AHP) technique in which a 0.086 (8.6%) Consistency Ratio (CR) was attained (highly accepted). Findings reveal that rainfall (29.97%), slopes’ angle (21.72%), elevation (15.68%), and soil types (11.77%) were found to have high influence on the occurrence of landslides, while proximity to faults (8.35%), lithology (4.94%), proximity to roads (3.41%), rivers (2.48%), and NDVI (1.69%) had very low influences, respectively. The overall results, obtained through Weighted Linear Combination (WLC) analysis techniques indicate that about 97669.65 Hectares (ha) of land are under very low levels of landslides susceptibility, which accounts for 24.03% of the total study area. Low susceptibility levels had 123105.84 ha (30.28%), moderate landslides susceptibility areas were found to have 140264.79 ha (34.50%), while high and very high susceptibility areas were found to cover about 45423.43 ha (11.17%) and 57.78 ha (0.01%), respectively. Furthermore, 81% overall model accuracy was obtained as computed from the Area Under the Curve (AUC) using Receiver Operating Characteristic (ROC) curve.

Keywords: Landslides; GIS; MCDA; Lushoto; Tanzania (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11069-023-06038-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:118:y:2023:i:2:d:10.1007_s11069-023-06038-2

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-023-06038-2

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:118:y:2023:i:2:d:10.1007_s11069-023-06038-2