EconPapers    
Economics at your fingertips  
 

Megalandslides and deglaciation: modelling of two case studies in the Central Andes

Sergio A. Sepúlveda (), Christian Tobar, Vannesa Rosales, Felipe Ochoa-Cornejo and Marisol Lara
Additional contact information
Sergio A. Sepúlveda: Simon Fraser University
Christian Tobar: Universidad de Chile
Vannesa Rosales: Universidad de Chile
Felipe Ochoa-Cornejo: Universidad de Chile
Marisol Lara: Universidad de Chile

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2023, vol. 118, issue 2, No 31, 1572 pages

Abstract: Abstract Large-volume rock slope failures are one of the main hazards in high mountain glaciated valleys, inducing severe damage to population and infrastructure, representing a high risk for society, ecosystems and infrastructure. The Andes Mountain Range is shaped by glacial activity and therefore by megalandslides due to changes in shear strength and deformation during periods of glaciation and deglaciation, which modify the slope stress state and, along with other processes, induce progressive damage in the rock mass, eventually leading to failure. The study focuses on validating the hypothesis that glacier unloading contributes to these types of landslides. The research numerically modelled the effects of glacier unloading on stress distribution and its potential impact on landslides, particularly using two Chilean cases: The 1987 Estero Parraguirre and the 2018 Yerba Loca rock slides. These models used the Universal Distinct Element Code, along with geological and geotechnical data from previous studies and field observations. The numerical results showed that the combination of shear stress changes due to glacial unloading and structural control from main discontinuities could cause landslides, with the deglaciation of glaciers potentially preparing the slope for catastrophic failure that may occur due to external climatic or tectonic triggers. The results suggest that stress redistribution and damage to the rock mass caused by deglaciation can lead to progressive failure. Further work is needed to understand better the slope failure mechanics to assess the geohazards in the Andes and other mountain regions.

Keywords: Landslides; Paraglacial; Rock slope stability; Deglaciation; Numerical modelling (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-023-06067-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:118:y:2023:i:2:d:10.1007_s11069-023-06067-x

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-023-06067-x

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:118:y:2023:i:2:d:10.1007_s11069-023-06067-x