EconPapers    
Economics at your fingertips  
 

Temporal distribution model and occurrence probability of M ≥ 6.5 earthquakes in North China Seismic Zone

Weijin Xu (), Jian Wu and Mengtan Gao
Additional contact information
Weijin Xu: China Earthquake Administration
Jian Wu: China Earthquake Disaster Prevention Center
Mengtan Gao: China Earthquake Administration

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2023, vol. 119, issue 1, No 5, 125-141

Abstract: Abstract The temporal distribution of earthquakes provides important basis for earthquake prediction and seismic hazard analysis. The relatively limited records of strong earthquakes have often made it difficult to study the temporal distribution models of regional strong earthquakes. However, there are hundreds of years of complete strong earthquake records in the North China Seismic Zone, providing abundant basic data for studying temporal distribution models. Using the data of M ≥ 6.5 earthquakes in North China as inputs, this paper estimates the model parameters using the maximum likelihood method with Poisson, Gamma, Weibull, Lognormal and Brownian passage time (BPT) distributions as target models. The optimal model for describing the temporal distribution of earthquakes is determined according to Akaike information criterion (AIC),and Kolmogorov–Smirnov test (K–S test). The results show that Lognormal and BPT models perform better in describing the temporal distribution of strong earthquakes in North China. The mean recurrence periods of strong earthquakes (M ≥ 6.5) calculated based on these two models are 8.1 years and 13.2 years, respectively. In addition, we used the likelihood profile method to estimate the uncertainty of model parameters. For the BPT model, the mean and 95% confidence interval of recurrence interval μ is 13.2 (8.9–19.1) years, and the mean and 95% confidence interval of α is 1.29 (1.0–1.78). For the Lognormal model, the mean value and 95% confidence interval of v is 2.09 (1.68–2.49), the mean value exp (v) corresponding to earthquake recurrence interval is 8.1 (5.4–12.1) years. In this study, we also calculated the occurrence probability of M ≥ 6.5 earthquakes in the North China Seismic Zone in the future, and found that the probability and 95% confidence interval in the next 10 years based on the BPT model is 35.3% (26.8%-44.9%); the mean value and 95% confidence interval of earthquake occurrence probability based on the Lognormal distribution is 35.4% (22.9%-49.7%); the mean probability and 95% confidence interval based on the Poisson model is 53.1% (41.1%-64%). The results of this study may provide important reference for temporal distribution model selection and earthquake recurrence period calculation in future seismic hazard analysis in North China.

Keywords: Temporal distribution model; Brownian passage time (BPT) distribution; Lognormal distribution; Probability of earthquake occurrence (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-023-06124-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:119:y:2023:i:1:d:10.1007_s11069-023-06124-5

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-023-06124-5

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:119:y:2023:i:1:d:10.1007_s11069-023-06124-5