The damage assessment of masonry structures and engineering seismology studies (19–22 November 2021 Köprüköy earthquakes (Mw 5.1 and Mw 4.7) in Erzurum, Turkey)
Oğuzhan Çelebi (),
Çağlar Özer (),
Erdem Bayrak (),
Barış Bayrak (),
Mahmut Kılıç () and
Abdulkadir Cüneyt Aydın ()
Additional contact information
Oğuzhan Çelebi: Atatürk University
Çağlar Özer: Ataturk University
Erdem Bayrak: Atatürk University
Barış Bayrak: Kars Kafkas University
Mahmut Kılıç: Atatürk University
Abdulkadir Cüneyt Aydın: Atatürk University
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2023, vol. 119, issue 3, No 19, 1632 pages
Abstract:
Abstract The main purpose of this paper is to present the damage features of masonry structures and engineering seismology studies after the 19–22 November 2021 Köprüköy earthquakes (Mw 5.1 and Mw 4.7). The masonry structures damaged near the epicenter have been examined. Damages have been detected that such as vertical cracks in the walls of the masonry structures, out-of-plane bending of the walls, splits in the joints of the walls, and separation of the floors from the elements such as walls and roofs. The fact that the structures in the region do not receive an engineering service and that they are constructed without complying with the relevant earthquake regulations are thought to cause such damage. The damage in Topçu village of Köprüköy district in Erzurum is more than in other settlements. Microtremor measurements have been applied in Topçu Village to investigate dynamic soil features. The soil amplification factor and soil predominant period have been obtained ~ 6.8 and ~ 1.3 s for the first measurement and ~ 9.4 and ~ 1.3 s for second location, respectively. Also, Vs30, bedrock depth, vulnerability index, and shear strain parameters have been calculated using some empirical relations. High bedrock depth and low Vs30 values are obtained for both measurements. The vulnerability index and shear strain values also indicate that the vulnerability of the soil is high. In order to remain in the safe zone for structures in a possible future earthquake, it has been suggested that it should comply with the earthquake-soil-structure relationship and should be designed in accordance with the earthquake regulation standard.
Keywords: Köprüköy earthquakes; Masonry structures; Microtremor; Soil dynamic features (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-023-06173-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:119:y:2023:i:3:d:10.1007_s11069-023-06173-w
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-023-06173-w
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().