Deformation evaluation and displacement forecasting of baishuihe landslide after stabilization based on continuous wavelet transform and deep learning
Yuting Liu,
Giordano Teza,
Lorenzo Nava,
Zhilu Chang,
Min Shang (),
Debing Xiong and
Simonetta Cola
Additional contact information
Yuting Liu: Ministry of Education
Giordano Teza: Alma Mater Studiorum University of Bologna
Lorenzo Nava: University of Padua
Zhilu Chang: University of Padua
Min Shang: Ministry of Education
Debing Xiong: SGIDI Engineering Consulting (Group) Co., Ltd
Simonetta Cola: University of Padua
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2024, vol. 120, issue 11, No 11, 9649-9673
Abstract:
Abstract Baishuihe Landslide is a large active landslide that threatens shipping transportation in the Three Gorges Reservoir (China). A manual monitoring system has been implemented since 2003. However, after some intervention works in 2018–2019, new automatic instruments providing continuous data on displacements, rainfall, reservoir water level, and groundwater table were installed. The data recorded by the new system show that interventions led to an effective stabilization improvement since the present displacement rate is smaller than that before interventions. However, the relevance of the Three Gorges basin and the potential hazard of a possible collapse requires a reliable forecast of the landslide evolution in a time scale from a few hours to a few days. To this aim, a two-step procedure is proposed here. In the first step, after a preliminary preprocessing-denoising of data, carried out by means of Discrete Wavelet Transform (DWT), a Continuous Wavelet Transform (CWT) procedure is used to provide scalograms of the time series of three quantities, e.g., landslide displacement rate, rainfall and the difference of water level between one piezometer and reservoir water level (RWL). In the second step, to evaluate the relationships among the velocity trend and the other significant quantities and obtain a reliable velocity forecast, the images given by binding together two or three scalograms of the mentioned quantities were analyzed using Convolutional Neural Network (CNN) tool. Several trials with different combinations of input time series of 2 or 3 quantities were carried out in order to recognize the factors which mainly affect the current displacement evolution. The results show that, after the interventions, rainfall is an important factor inducing deformation acceleration. The hydrodynamic pressure induced by the difference between the groundwater pressure and reservoir water level also plays a dominant role in accelerating the Baishuihe landslide. Furthermore, the coupling of rainfall and hydrodynamic pressure produces displacement velocities higher than what the quantities singularly do. These results provide valuable indications for optimizing the monitoring configuration on the landslide and obtaining velocity forecasts in a few hours/days.
Keywords: Landslide displacement forecast; Reservoir water level; Rainfall; Deep learning; Discrete wavelet transform; Continuous wavelet transform; Convolutional neural network (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-024-06580-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:120:y:2024:i:11:d:10.1007_s11069-024-06580-7
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-024-06580-7
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().