EconPapers    
Economics at your fingertips  
 

Quantifying future changes of flood hazards within the Broadland catchment in the UK

Ross Gudde, Yi He (), Ulysse Pasquier, Nicole Forstenhäusler, Ciar Noble and Qianyu Zha
Additional contact information
Ross Gudde: University of East Anglia
Yi He: University of East Anglia
Ulysse Pasquier: University of East Anglia
Nicole Forstenhäusler: University of East Anglia
Ciar Noble: University of East Anglia
Qianyu Zha: University of East Anglia

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2024, vol. 120, issue 11, No 21, 9893-9915

Abstract: Abstract Flooding represents the greatest natural threat to the UK, presenting severe risk to populations along coastlines and floodplains through extreme tidal surge and hydrometeorological events. Climate change is projected to significantly elevate flood risk through increased severity and frequency of occurrences, which will be exacerbated by external drivers of risk such as property development and population growth throughout floodplains. This investigation explores the entire flood hazard modelling chain, utilising the nonparametric bias correction of UKCP18 regional climate projections, the distributed HBV-TYN hydrological model and HEC-RAS hydraulic model to assess future manifestation of flood hazard within the Broadland Catchment, UK. When assessing the independent impact of extreme river discharge and storm surge events as well as the impact of a compound event of the two along a high emission scenario, exponential increases in hazard extent over time were observed. The flood extent increases from 197 km2 in 1990 to 200 km2 in 2030, and 208 km2 in 2070. In parallel, exponential population exposure increases were found from 13,917 (1990) to 14,088 (2030) to 18,785 (2070). This methodology could see integration into policy-based flood risk management by use of the developed hazard modelling tool for future planning and suitability of existing infrastructure at a catchment scale.

Keywords: Flood; Risk; Hazard; Exposure; Climate (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-024-06590-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:120:y:2024:i:11:d:10.1007_s11069-024-06590-5

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-024-06590-5

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:120:y:2024:i:11:d:10.1007_s11069-024-06590-5