EconPapers    
Economics at your fingertips  
 

Investigating the impact of tropical deforestation on Indian monsoon hydro-climate: a novel study using a regional climate model

Abhishek Lodh () and Stuti Haldar
Additional contact information
Abhishek Lodh: Department of Physical Geography and Ecosystem Science, Lund University
Stuti Haldar: Indian Institute for Human Settlements

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2024, vol. 120, issue 12, No 39, 11399-11431

Abstract: Abstract This study uses a state-of-the-art regional climate model (RCM) to examine how tropical deforestation affects the meteorology of the Indian Summer Monsoon (ISM). Incorporating insights from existing research on deforestation by climate scientists, alongside evidence of environmental deterioration in semi-arid, hilly and tropical regions of Southeast Asia, this research seeks to elucidate the critical influence of anthropogenic reasons of climate change on the hydroclimate of ISM. Employing “tropical deforestation” design experiments with the ICTP-RegCMv4.4.5.10 RCM the study evaluates the effects on meteorological parameters including precipitation, circulation patterns and surface parameters. This experimental design entails substituting vegetation type in the land use map of RegCMv4.4.5.10 model, such as deciduous and evergreen trees in Southeast Asia with “short grass” to mimic tropical deforestation. Findings reveal that deforestation induces abnormal anti-cyclonic circulation over eastern India curtails moisture advection, diminishing latent heat flux and moisture transport, leads to a decrease in precipitation compared to control experiment scenario. Alterations in albedo and vegetation roughness length attributable to deforestation impact temperature, humidity, precipitation, consequently exacerbating drought and heatwave occurrences. Additionally, the study also explores deforestation-induced feedback on ISM precipitation variability. The study concludes that deforestation substantially alters land-surface characteristics, water and energy cycle, and atmospheric circulation, thereby influencing regional climate dynamics. These findings offer foundational insights into comprehending land-use and land-cover changes and their implications for climate change adaptation strategies.

Keywords: Regional climate modelling; RegCMv4.4.5.10; Tropical deforestation; Albedo change; UW-PBL; Holtslag-PBL; Precipitation response; Droughts; Climate mitigation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-024-06615-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:120:y:2024:i:12:d:10.1007_s11069-024-06615-z

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-024-06615-z

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:120:y:2024:i:12:d:10.1007_s11069-024-06615-z