EconPapers    
Economics at your fingertips  
 

Predicting climate-based changes of landscape structure for Turkiye via global climate change scenarios: a case study in Bartin river basin with time series analysis for 2050

Merve Kalayci Kadak (), Sevgi Ozturk () and Ahmet Mert ()
Additional contact information
Merve Kalayci Kadak: Kastamonu University
Sevgi Ozturk: Kastamonu University
Ahmet Mert: Isparta University of Applied Sciences

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2024, vol. 120, issue 14, No 29, 13289-13307

Abstract: Abstract This study was designed to reveal the possible effects of climate change on the landscape structure of the Bartın Stream Basin. Remote sensing (RS) and Geographic Information Systems (GIS) tools and statistical methods were employed throughout the study. Landsat satellite images, which are 30 m × 30 m resolution images produced by Landsat 4–5, Landsat 7, and Landsat 8-Oli satellites, were used. In addition, 42 variables were produced, including 19 bioclimatic variables, plant index data from satellite images, and environmental variables. The effect of the produced variables on land use-land cover (LULC) was investigated. Then, the expected situation in 2050 according to the RCP climate change scenarios was estimated using the R Studio software with time series analysis. The data for 2050 were modeled and mapped using the Maximum Entropy method. As a result, it was revealed that LULC changes within the basin would be in the form of artificialization and increased fragmentation, that bare lands and residential areas would increase, and that agricultural areas and forest areas would decrease by approximately 50%. Planning should be made in order to reduce the breakdown of landscape resistance by predicting the adverse events to be experienced due to climate change in the future. It was concluded that agriculture, which was determined as the development strategy of the region in the current Environmental Plan (EP) of the basin, would not be possible due to the approximately 50% loss in agricultural areas. This study revealed that the effects of climate change, which is the biggest threat of the age, could be revealed with statistical models. Graphical Abstract

Keywords: Climate change mitigation; Adaptation strategies; Climate policy; Geographic information system (GIS); Land use planning (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-024-06706-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:120:y:2024:i:14:d:10.1007_s11069-024-06706-x

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-024-06706-x

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:120:y:2024:i:14:d:10.1007_s11069-024-06706-x