EconPapers    
Economics at your fingertips  
 

A novel approach to stability analysis of random soil-rock mixture slopes using finite element method in ABAQUS

Cao Van-Hoa and Gyu-Hyun Go ()
Additional contact information
Cao Van-Hoa: Kumoh National Institute of Technology
Gyu-Hyun Go: Kumoh National Institute of Technology

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2024, vol. 120, issue 15, No 27, 14407 pages

Abstract: Abstract Minimizing the damage caused by landslide disasters in regions with complex geological conditions requires the development of effective and reliable methods for assessing slope stability. This study aims to generate and analyze the stability of random soil-rock mixture slope models, considering the rock block content, spatial distribution, and convexity-concavity feature of rock blocks in the slope. A Python script was developed to create these random soil-rock mixture models using the ABAQUS finite element software. Additionally, the strength reduction technique was applied to calculate the factor of safety via a USDFLD subroutine implemented in ABAQUS. A series of numerical analyses were conducted to assess the impact of rock block content and the convexity-concavity feature of rock blocks on the stability of soil-rock mixture slopes. Moreover, the impact of the random spatial distribution of rock blocks on the stability of soil-rock mixture slopes was discussed. The results show that rock block content below 20% can affect slope stability both negatively and positively. Notably, significant improvements in the stability of soil-rock mixture slopes are observed only when the rock block content exceeds 30%. Furthermore, the convexity-concavity feature of rock blocks can improve the safety factor of the slopes. This study provides a comprehensive methodology and serves as a valuable reference for estimating the safety factor of soil-rock mixture slopes using the finite element method.

Keywords: Soil-rock mixtures; Stability analysis; Finite element method; Rock block content; Convexity-concavity feature (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-024-06771-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:120:y:2024:i:15:d:10.1007_s11069-024-06771-2

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-024-06771-2

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:120:y:2024:i:15:d:10.1007_s11069-024-06771-2