EconPapers    
Economics at your fingertips  
 

Projection of future non-stationary intensity-duration-frequency curves using the pooled CMIP6 climate models

Ameneh Mianabadi (), Mohammad Mehdi Bateni and Morteza Babaei
Additional contact information
Ameneh Mianabadi: Graduate University of Advanced Technology
Mohammad Mehdi Bateni: University School for Advanced Studies Pavia
Morteza Babaei: University of Tromsø

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2024, vol. 120, issue 15, No 24, 14332 pages

Abstract: Abstract Extreme precipitation events can cause severe floods that pose significant risks to human lives, properties, and ecosystems. Therefore, understanding how climate change may affect the characteristics of these events is crucial for developing effective adaptation and mitigation strategies. In this study, we investigated the effect of climate change on the extreme characteristics through the concept of Intensity-Duration-Frequency curves. For this purpose, annual maximum precipitation series derived from five climate models from Coupled Model Intercomparison Project phase 6 were used to develop the historical (1965–2014) and future (2051–2100) curves for 12 major cities in Iran. By applying the pooling data method, the changes in intensity and frequency of the extreme precipitation with duration of 24-h, 48-h, and 72-h were assessed for three scenarios of SSP1-2.6, SSP2-4.5, and SSP3-7.0. The results indicate that most stations will experience more intense (up to 20%) and frequent (up to 8 times) extreme precipitation events under projected climate change scenarios, especially for the SSP3-7.0 scenario. However, these results varied across cities. The findings of this study provide valuable insights into the potential impacts of climate change on flood risk management in Iran and suggest the need for appropriate adaptive strategies.

Keywords: IDF; Flood risk management; Pooling data method; Iran; Annual maximum precipitation; CMIP6 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-024-06779-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:120:y:2024:i:15:d:10.1007_s11069-024-06779-8

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-024-06779-8

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:120:y:2024:i:15:d:10.1007_s11069-024-06779-8