Radar precipitation nowcasting based on ConvLSTM model in a small watershed in north China
Jianzhu Li,
Yi Shi,
Ting Zhang (),
Zhixia Li,
Congmei Wang and
Jin Liu
Additional contact information
Jianzhu Li: Tianjin University
Yi Shi: Tianjin University
Ting Zhang: Tianjin University
Zhixia Li: Hebei Xingtai Meteorological Bureau
Congmei Wang: Hebei Xingtai Meteorological Bureau
Jin Liu: Hebei Xingtai Meteorological Bureau
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2024, vol. 120, issue 1, No 4, 63-85
Abstract:
Abstract The spatial distribution and depth of precipitation are the main driving factors for the formation of flood disasters. Precipitation nowcasting plays a crucial role in rainstorm warning, flood mitigation and water resources management. However, high spatiotemporal resolution nowcasting is very challenging owing to the uncertain dynamics and chaos, especially at a small-scale region. In recent years, deep learning approaches were applied in precipitation nowcasting and achieved good performance in learning spatiotemporal features. In this paper, ConvLSTM model and sequences of radar reflectivity maps were used to forecast the future sequence of reflectivity maps with up to 2 h lead time in Liulin watershed with a small area of 57.4 km2. Dynamic hierarchical Z–I relationship was employed to calculate the forecasting precipitation and the forecasted spatiotemporal features were compared to the observed. The results indicated that the model can provide a well performance for the reflectivity above 10 dBZ with 0.70 of CSI for 30 min nowcasting and 0.57 for 2 h nowcasting, but was not good at forecasting the reflectivity above 30 dBZ with 0.38 of mean CSI for 30 min nowcasting and 0.12 for 2 h nowcasting, which have a decrease of 45.7% and 78.9%, respectively. The forecasted precipitation could truly show the details of precipitation spatial distribution and provide the accuracy of forecasting area with 49.2% for 30 min nowcasting. The satisfied areal precipitation depth could be offered basically with 26.3% of Bias for 30 min nowcasting in Liulin watershed.
Keywords: Radar reflectivity; Precipitation nowcasting; ConvLSTM; Dynamic hierarchical Z–I relationship (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-023-06193-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:120:y:2024:i:1:d:10.1007_s11069-023-06193-6
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-023-06193-6
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().