EconPapers    
Economics at your fingertips  
 

Hindcasting compound pluvial, fluvial and coastal flooding during Hurricane Harvey (2017) using Delft3D-FM

Wonhyun Lee (), Alexander Y. Sun, Bridget R. Scanlon and Clint Dawson
Additional contact information
Wonhyun Lee: The University of Texas at Austin
Alexander Y. Sun: The University of Texas at Austin
Bridget R. Scanlon: The University of Texas at Austin
Clint Dawson: The University of Texas at Austin

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2024, vol. 120, issue 1, No 39, 880 pages

Abstract: Abstract Hurricane Harvey (2017) resulted in unprecedented damage from flooding in the Houston–Galveston area of the U.S. Gulf Coast. The objective of this study was to better quantify the impacts of compound flooding and to assess the relative contributions of storm surge, pluvial (rainfall) and fluvial (riverine) flooding using Hurricane Harvey as a case study. Here we developed a comprehensive numerical modeling framework to simulate flood extents and levels during Hurricane Harvey using Delft3D Flexible Mesh and validated results against observed water levels, waves, winds, hydrographs and high water marks. Results show that pluvial flooding dominated from widespread heavy rainfall during Harvey, accounting for ~ 60–65% of flooding. Pluvial flooding occurred mostly in watersheds and floodplains in West and South Bays (≤ ~ 1.5 m), upper Galveston Bay (Trinity River Basin, 2–3 m) and Harris County (≤ ~ 2.5 m). River runoff led to local ~ 1–2 m flooding. Significant storm surge levels were simulated northwest of the main Bay (2–2.5 m) and Galveston Bay (1–2 m) and in several watersheds in West/East of Galveston Bay. Wave action caused flood depth and water levels to rise by about 0.3–0.5 m in nearshore areas. Maximum flooding extent developed around August 29, 2017, which compared well to FEMA flood depth data. Nonlinear effects of compound flooding are greater than the sum of individual components. Results from this large-scale coupled modeling analysis provide a useful basis for coastal risk management and hazard mitigation. Our integrated framework is general and can be readily applied to other coastal compound flooding analyses.

Keywords: Delft3D-FM; Compound flooding; Pluvial flooding; Fluvial flooding; Storm surge; Hurricane Harvey (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-023-06247-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:120:y:2024:i:1:d:10.1007_s11069-023-06247-9

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-023-06247-9

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:120:y:2024:i:1:d:10.1007_s11069-023-06247-9