EconPapers    
Economics at your fingertips  
 

Flood susceptibility prediction using MaxEnt and frequency ratio modeling for Kokcha River in Afghanistan

Abdul Baser Qasimi (), Vahid Isazade () and Ronny Berndtsson ()
Additional contact information
Abdul Baser Qasimi: Samangan University
Vahid Isazade: Kharazmi University
Ronny Berndtsson: Lund University

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2024, vol. 120, issue 2, No 17, 1367-1394

Abstract: Abstract Flooding is a natural but unavoidable disaster that occurs over time. Flooding threatens human life, property, and resources and affects regional and national economies. Through frequency ratio and MaxEnt modeling, flood sensitivity was determined in the Amu Darya River Basin in Badakhshan Province, Afghanistan. Slope, plan curvature, distance to river, rainfall, aspect, land use, elevation, Normalized Difference Vegetation Index (NDVI), soil type, lithology, Topographic Humidity Index (TWI), and drainage density were used to quantify flood susceptibility. In total, 88 flood points collected from Google Earth were used to train the frequency ratio model to predict flood susceptibility, and 34 GPS-recorded points of the flooded area were used to evaluate the model’s performance. The frequency ratio model displayed a success rate of above 86%. However, using a jackknife entropy test, the MaxEnt model yielded a 97% success rate. The results showed that rainfall, land use, distance to river, and soil type were the most important parameters for evaluating flood sensitivity. The developed models can help planners and decision-makers perform flood susceptibility mapping in the region by determining locations of flooding sensitivity.

Keywords: Flood; Frequency ratio; MaxEnt model; Jackknife test; Kokcha River; Afghanistan (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-023-06232-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:120:y:2024:i:2:d:10.1007_s11069-023-06232-2

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-023-06232-2

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:120:y:2024:i:2:d:10.1007_s11069-023-06232-2