EconPapers    
Economics at your fingertips  
 

A saturated stochastic simulator: synthetic US Gulf coast tropical cyclone precipitation fields

Jennifer Nakamura (), Upmanu Lall, Yochanan Kushnir and Patrick A. Harr
Additional contact information
Jennifer Nakamura: Columbia University
Upmanu Lall: Columbia University
Yochanan Kushnir: Columbia University
Patrick A. Harr: Jupiter Intelligence

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2024, vol. 120, issue 2, No 14, 1295-1318

Abstract: Abstract The space–time fields of rainfall during a hurricane and tropical storm (TC) landfall are critical for coastal flood risk preparedness, assessment, and mitigation. We present an approach for the stochastic simulation of rainfall fields that leverages observed, high-resolution spatial fields of historical landfalling TCs rainfall that is derived from multiple instrumental and remote sensing sources, and key variables recorded for historical TCs. Spatial realizations of rainfall at each time step are simulated conditional on the variables representing the ambient conditions. We use 6 hourly precipitation fields of tropical cyclones from 1983 to 2019 that made landfall on the Gulf coast of the US, starting from 24 h before landfall until the end of the track. A conditional K-nearest neighbor method is used to generate the simulations. The TC attributes used for conditioning are the preseason large-scale climate indices, the storm maximum wind speed, minimum central pressure, the latitude and speed of movement of the storm center, and the proportion of storm area over land or ocean. Simulation of rainfall for three hurricanes that are kept out of the sample: Katrina [2005], Rita [2005], and Harvey [2017] are used to evaluate the method. The utility of coupling the approach to a hurricane track simulator applied for a full season is demonstrated by an out-of-sample simulation of the 2020 season.

Keywords: N. Atlantic tropical cyclone; Precipitation; Stochastic model; Gulf states (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-023-06245-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:120:y:2024:i:2:d:10.1007_s11069-023-06245-x

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-023-06245-x

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:120:y:2024:i:2:d:10.1007_s11069-023-06245-x