EconPapers    
Economics at your fingertips  
 

A comprehensive study on the synchronized outgoing longwave radiation and relative humidity anomalies related to global Mw ≥ 6.5 earthquakes

Munawar Shah (), Muhammad Umar Draz and Tahir Saleem
Additional contact information
Munawar Shah: Tongji University
Muhammad Umar Draz: Institute of Space Technology
Tahir Saleem: Hamdard University, Islamabad Capital Territory

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2024, vol. 120, issue 2, No 19, 1442 pages

Abstract: Abstract Remote Sensing (RS) provides significant insights for the monitoring of natural disasters like earthquakes for pre-and post-seismic precursors around the seismogenic regions. The integrated analysis of atmosphere data from satellites has been vital in this progress, providing detection of anomalies associated with the seismic activities. This study provides a comprehensive study of a statistical analysis for possible atmospheric precursors over the forth coming seismic breeding zone around the world. In this study, we have investigated Outgoing Longwave Radiation (OLR) and Relative Humidity (RH) anomalies associated with 10 large magnitude (Mw ≥ 6.5) earthquakes around the world. We examined pre-and post-seismic anomalies in OLR and RH from the data of the National Oceanic and Atmospheric Administration, Physical Sciences Laboratory (NOAA-PSL). This research confirms the existence of OLR and RH precursors as candidate parameters for large earthquakes precursors over the epicenters. The study findings indicate that the OLR and RH anomalies were evident in each of the 10 seismic events, with anomalous windows occurring between 7 and 5 days before and in few cases 2 to 3 days after the earthquake. Furthermore, this study suggests that OLR and RH hold promise as reliable space-based precursors for earthquake forecasting. The identified anomalies exhibit a notable consistency with the stress-induced activation of proxy defects at the interface between the lithosphere and atmosphere within the seismic breeding zone.

Keywords: Atmospheric parameters; Earthquake precursors; Outgoing longwave radiation; Relative humidity; Remote sensing (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-023-06262-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:120:y:2024:i:2:d:10.1007_s11069-023-06262-w

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-023-06262-w

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:120:y:2024:i:2:d:10.1007_s11069-023-06262-w