A nonparametric standardized runoff index for characterizing hydrological drought in the Shaying River Basin, China
Rong Gan,
Shuqian Gu (),
Xiaoxia Tong,
Jinqiang Lu and
Hui Tang
Additional contact information
Rong Gan: Zhengzhou University
Shuqian Gu: Zhengzhou University
Xiaoxia Tong: China Geological Environmental Monitoring Institute
Jinqiang Lu: Zhengzhou University
Hui Tang: Henan Institute of Geological Survey
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2024, vol. 120, issue 3, No 3, 2233-2253
Abstract:
Abstract Under the background of global warming and human activities, drought occurs frequently in the Shaying River Basin (SYRB). It is particularly important for agriculture and water resources management to comprehensively evaluate the evolution of hydrological drought in the river basin. In this study, we used the nonparametric standardized runoff index (NSRI) to investigate the temporal characteristics of hydrological drought in the SYRB from 1956 to 2013. The duration and severity of hydrological drought events were identified based on run theory, and the copula functions with the highest goodness of fit were used to investigate the drought return period. In addition, the double cumulative curve method was used to analyze the main causes of hydrological drought in the SYRB. The results indicated that: (1) From 1957 to 2013, the drought showed an increasing trend in the upper, middle and lower reaches of the SYRB, with frequent alternations of droughts, and the trend characteristic of drought was different in each subzone; (2) the frequency of drought decreased from upstream to downstream, but the duration and severity of drought increased; (3) Frank-copula was considered to be the best fitting two-dimensional copula function in the SYRB and the most severe drought lasted for 25 months, with drought severity of 11.485, and drought return period of 42.14 years; (4) human activities were the main reason for the decrease of runoff in the SYRB and the dominant factor for the intensification of hydrological drought in the basin.
Keywords: Hydrological drought; Nonparametric standardized runoff index; Copula; Shaying River Basin (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-023-06179-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:120:y:2024:i:3:d:10.1007_s11069-023-06179-4
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-023-06179-4
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().