Beyond the local climate change uplift – The importance of changes in spatial structure on future fluvial flood risk in Great Britain
Paul Sayers (),
Adam Griffin,
Jason Lowe,
Dan Bernie,
Sam Carr,
Alison Kay and
Lisa Stewart
Additional contact information
Paul Sayers: Sayers and Partners LLP
Adam Griffin: UK Centre of Ecology and Hydrology
Jason Lowe: Met Office
Dan Bernie: Met Office
Sam Carr: Sayers and Partners LLP
Alison Kay: UK Centre of Ecology and Hydrology
Lisa Stewart: UK Centre of Ecology and Hydrology
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2024, vol. 120, issue 4, No 27, 3773-3798
Abstract:
Abstract Widespread spatially coherent flood events can cause severe damage and disruption. Climate change has the potential to change the severity and frequency of such events. Despite this, assessment of future fluvial flood risk typically gives little to no consideration to potential changes in the spatial structure of future events. To understand the significance of this gap, climate model simulations are coupled with a national hydrological model to identify event spatially coherent present and future flood events. A statistical Empirical Copula is used to generate a large number of unseen events and linked to a national flood risk simulation model. The research finds that including changes in the spatial structure of flood events materially increases projected changes in risk when compared to conventional approaches based on local uplifts alone; increasing the projected change in Expected Annual Damage across Great Britain by a factor of ~ 1.5. The event-based approach is also shown to provide new insights into the extreme distribution fluvial risk including single event damage, damage seasons, and damage years. The results suggest the 1-in-100-year winter flood may increase from £1.3b to £2.1b, and the 1-in-100 year single event damage may rise from £1.1b today to £1.7b by the 2080s given a 4 °C rise in Global Mean Surface Temperature (assuming current adaptation policies continue and no population growth). Consequently, the findings suggest a much greater emphasis is needed on spatial ‘flood events’ if future risk is to be understood and adaptation responses appropriately framed. Graphical abstract
Keywords: Climate change; Regional climate modelling; Flood risk; Adaptation (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-023-06350-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:120:y:2024:i:4:d:10.1007_s11069-023-06350-x
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-023-06350-x
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().