EconPapers    
Economics at your fingertips  
 

An integrated approach for mapping slow-moving hillslopes and characterizing their activity using InSAR, slope units and a novel 2-D deformation scheme

Nitheshnirmal Sadhasivam (), Ling Chang and Hakan Tanyaş
Additional contact information
Nitheshnirmal Sadhasivam: Virginia Tech
Ling Chang: University of Twente
Hakan Tanyaş: University of Twente

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2024, vol. 120, issue 4, No 33, 3919-3941

Abstract: Abstract Strong earthquakes are not only able to change the earth's surface processes by triggering a large population of co-seismic landslides but also by influencing hillslope deformation rates in post-seismic periods. An increase in post-seismic hillslope deformation rates could also be linked to a change in post-seismic landslide hazard level and, thus, could be exploited to better assess post-seismic landslide risk in a given area. However, variations in hillslope deformations from pre- to post-seismic phases have rarely been examined for strong earthquakes. This paper examines pre- and post-seismic hillslope deformations, from 2014 to 2018, for an area (~ 2300 km2) affected by the 2016 Mw7.8 Kaikōura earthquake using time series Interferometric Synthetic Aperture Radar (InSAR) technique. To consistently analyse the entirety of the area from pre- to post-seismic phases, we aggregate InSAR-derived deformations for geomorphologically meaningful landscape partitions called Slope Units (SUs). We further examine the aggregated data through a 2-D hillslope deformation scheme, which we utilise as a method to systematically identify the variations in post-seismic hillslope deformation trends. In this context, we label newly activated, uninterruptedly deforming, and stabilized hillslopes in the post-seismic phase. We found 243 (4.76%) SUs out of 5104 SUs located in the study area to be active in the post-seismic phase. In addition to SUs, which may contain multiple landslides, we also analysed co-seismic landslides, in particular, showing active deformation in the post-seismic period. Results showed that 368 (4.69%) co-seismic landslides out of 7831 are actively deforming in the post-seismic phase. Overall, the areas affected by larger ground shaking show higher post-seismic deformations, which highlights the importance of the earthquake legacy effect as a factor controlling post-seismic hillslope deformations.

Keywords: Slow-moving landslides; Earthquake legacy effect; Sentinel-1; Hillslope deformation scheme; Slope units (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-023-06353-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:120:y:2024:i:4:d:10.1007_s11069-023-06353-8

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-023-06353-8

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:120:y:2024:i:4:d:10.1007_s11069-023-06353-8