EconPapers    
Economics at your fingertips  
 

Model-data matching method for natural disaster emergency service scenarios: implementation based on a knowledge graph and community discovery algorithm

Honghao Liu, ZhuoWei Hu (), Ziqing Yang and Mi Wang
Additional contact information
Honghao Liu: Capital Normal University
ZhuoWei Hu: Capital Normal University
Ziqing Yang: Capital Normal University
Mi Wang: Capital Normal University

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2024, vol. 120, issue 5, No 9, 4233-4255

Abstract: Abstract Massive disaster-related data and model methods are available in different stages of natural disaster emergency management; however, they often lack the representation of the significance of crucial information. In addition, traditional methods are difficult to automate and fine-match, resulting in greater difficulty in intelligent applications. To address this problem, interconnected knowledge arranged in a knowledge graph and a community discovery algorithm were used to match disaster data with the appropriate method under a unified description framework. Based on the knowledge graph constructed by ontology mapping, this study aimed to represent and store the complex entities and relationships among disaster-related information. The node importance analysis and community discovery algorithm were used to analyze the community structure of important nodes, and a typical rainstorm flood disaster risk assessment emergency service scenario was taken as an example for experimental verification. The results showed that the constructed knowledge graph of natural disaster emergency services can support the formal expression of semantic correlation between disaster scenarios, model methods, and disaster data. The community discovery method performed well in overlapping community module degrees. The method proposed in this study can be used to formalize the representation and storage of massive heterogeneous data and conduct fine matching after quantitative analysis of the importance of model methods and data required for risk assessment of emergency service scenarios. Furthermore, the proposed method can provide theoretical support for improving the scientificity, accuracy, and interpretability of risk assessment decision management and promoting knowledge-driven intelligent emergency information service capabilities.

Keywords: Disaster data matching; Knowledge graph; Community detection algorithm; Emergency risk assessment; Ontology mapping (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-023-06360-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:120:y:2024:i:5:d:10.1007_s11069-023-06360-9

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-023-06360-9

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:120:y:2024:i:5:d:10.1007_s11069-023-06360-9