EconPapers    
Economics at your fingertips  
 

Combining artificial neural networks and genetic algorithms to model nitrate contamination in groundwater

Vahid Gholami (), Hossein Sahour, Mohammad Reza Khaleghi, Yasser Ebrahimian Ghajari and Soheil Sahour
Additional contact information
Vahid Gholami: University of Guilan
Hossein Sahour: Western Michigan University
Mohammad Reza Khaleghi: Islamic Azad University
Yasser Ebrahimian Ghajari: Babol Noshirvani University of Technology
Soheil Sahour: Rouzbahan Institute of Higher Education

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2024, vol. 120, issue 5, No 32, 4789-4809

Abstract: Abstract Increasing the concentration of nitrates in aquifer systems reduces water quality and causes serious diseases and complications for human health. Therefore, it is important to monitor nitrate levels in groundwater resources and identify contaminated aquifers. In this research, multiple artificial neural network (ANN) structures and a genetic algorithm (GA) were combined to predict groundwater nitrate levels using its affecting factors in Mazandaran plain (north of Iran). Five ANN algorithms were trained, and their performances were evaluated during the training, cross-validating, and testing stages. Then, GA was combined with the ANNs, and the process of training, cross-validation, and testing was repeated with the same data. The results showed the factors of distance from industrial centers (R = − 0.57), population density (R = 0.56), and groundwater depth (R = − 0.15) are the most important factors in groundwater nitrate contamination. Further, a modular neural network (MNN) model showed the highest performance among the networks used in nitrate concentration modeling. Additionally, combining ANNs with GA enhanced the performance of the models in predicting nitrate concentration. The MSE and R-srqr of the MNN model in the test stage were estimated to be 0.2 and 0.7, respectively. After combining with GA, these values were improved to 0.1 and 0.8, respectively. Finally, the zoning map of nitrate pollution in groundwater was prepared using the ANN-GA hybrid model in the GIS environment. The cost-effective methodology presented in this study can be used to predict the spatial and temporal changes of nitrates in the study area and other areas with similar settings.

Keywords: Nitrate contamination; Training; Optimization; Testing; Pollution zoning map; Mazandaran plain (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-023-06387-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:120:y:2024:i:5:d:10.1007_s11069-023-06387-y

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-023-06387-y

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:120:y:2024:i:5:d:10.1007_s11069-023-06387-y