EconPapers    
Economics at your fingertips  
 

Offshore application of landslide susceptibility mapping using gradient-boosted decision trees: a Gulf of Mexico case study

Alec S. Dyer, MacKenzie Mark-Moser (), Rodrigo Duran and Jennifer R. Bauer
Additional contact information
Alec S. Dyer: National Energy Technology Laboratory
MacKenzie Mark-Moser: National Energy Technology Laboratory
Rodrigo Duran: National Energy Technology Laboratory
Jennifer R. Bauer: National Energy Technology Laboratory

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2024, vol. 120, issue 7, No 12, 6223-6244

Abstract: Abstract Among natural hazards occurring offshore, submarine landslides pose a significant risk to offshore infrastructure installations attached to the seafloor. With the offshore being important for current and future energy production, there is a need to anticipate where future landslide events are likely to occur to support planning and development projects. Using the northern Gulf of Mexico (GoM) as a case study, this paper performs Landslide Susceptibility Mapping (LSM) using a gradient-boosted decision tree (GBDT) model to characterize the spatial patterns of submarine landslide probability over the United States Exclusive Economic Zone (EEZ) where water depths are greater than 120 m. With known spatial extents of historic submarine landslides and a Geographic Information System (GIS) database of known topographical, geomorphological, geological, and geochemical factors, the resulting model was capable of accurately forecasting potential locations of sediment instability. Results of a permutation modelling approach indicated that LSM accuracy is sensitive to the number of unique training locations with model accuracy becoming more stable as the number of training regions was increased. The influence that each input feature had on predicting landslide susceptibility was evaluated using the SHapely Additive exPlanations (SHAP) feature attribution method. Areas of high and very high susceptibility were associated with steep terrain including salt basins and escarpments. This case study serves as an initial assessment of the machine learning (ML) capabilities for producing accurate submarine landslide susceptibility maps given the current state of available natural hazard-related datasets and conveys both successes and limitations.

Keywords: Landslide; Susceptibility; Offshore; Gulf of Mexico; Mass transport; Gradient-boosted decision trees (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-024-06492-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:120:y:2024:i:7:d:10.1007_s11069-024-06492-6

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-024-06492-6

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:120:y:2024:i:7:d:10.1007_s11069-024-06492-6