A fusion-based framework for daily flood forecasting in multiple-step-ahead and near-future under climate change scenarios: a case study of the Kan River, Iran
Marzieh Khajehali (),
Hamid R. Safavi (),
Mohammad Reza Nikoo () and
Mahmood Fooladi ()
Additional contact information
Marzieh Khajehali: Isfahan University of Technology
Hamid R. Safavi: Isfahan University of Technology
Mohammad Reza Nikoo: Sultan Qaboos University
Mahmood Fooladi: Isfahan University of Technology
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2024, vol. 120, issue 9, No 16, 8483-8504
Abstract:
Abstract This study proposes a novel fusion framework for flood forecasting based on machine-learning, statistical, and geostatistical models for daily multiple-step-ahead and near-future under climate change scenarios. An efficient machine-learning model with three remote-sensing precipitation products, including ERA5, CHIRPS, and PERSIANN-CDR, was applied to gap-fill data. Four individual machine-learning models, including Random Forest, Multiple-Layer Perceptron, Support Vector Machine, and Extreme Learning Machine, were developed twelve days ahead of streamflow modeling. Then, three fusion models, including Random Forest, Bayesian Model Averaging, and Bayesian Maximum Entropy, were applied to combine the outputs of individual machine-learning models. The proposed framework was also implemented to downscale the precipitation variables of three general climate models (GCMs) under SSP5-8.5 and SSP1-2.6 scenarios. The application of this approach is investigated on the Kan River, Iran. The results indicated that individual models illustrated weak performance, especially in far-step-ahead flood forecasting, so it is necessary to utilize a fusion technique to improve the results. The RF model indicated high efficiency in the fusion step compared to other fusion-based models. This technique also demonstrated effective proficiency in downscaling daily precipitation data of GCMs. Finally, the flood forecasting model was developed based on the fusion framework in the near future (2020–2040) by using precipitation data from two scenarios. We conclude that flood events based on SSP5-8.5 and SSP1-2.6 will increase in the future in our case study. Also, the frequency evaluation shows that floods under SSP1-2.6 will occur about 10% more than SSP5-8.5 in the Kan River basin from 2020 to 2040.
Keywords: Flood forecasting; Machine-learning models; Fusion-based models; Remote-sensing precipitation products; Climate change scenarios (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-024-06528-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:120:y:2024:i:9:d:10.1007_s11069-024-06528-x
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-024-06528-x
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().