Introduction and testing of a cost-effective GNSS system for landslide monitoring
Ingrid Arantxa Berru Garcia (),
Renato Macciotta (),
Jorge Rodriguez (),
Chris Gräpel (),
Roger Skirrow () and
Kristen Tappenden ()
Additional contact information
Ingrid Arantxa Berru Garcia: University of Alberta
Renato Macciotta: University of Alberta
Jorge Rodriguez: Klohn Crippen Berger
Chris Gräpel: Klohn Crippen Berger
Roger Skirrow: Alberta Transportation and Economic Corridors
Kristen Tappenden: Alberta Transportation and Economic Corridors
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2024, vol. 120, issue 9, No 18, 8549 pages
Abstract:
Abstract The use of Global Navigation Satellite System (GNSS) in combination with real-time kinematic technique, known as differential GNSS (dGNSS), has increased in recent years for monitoring landslide displacements and detecting early signs of potential failure, enabling an earlier response for risk mitigation than traditional monitoring techniques. GNSS offers several advantages, including high accuracy and high-frequency data collection. Although more cost-effective, their affordability may still present challenges for public organizations managing multiple landslides in their territory. The SparkFun is a suite of components for GNSS assembly designed for topographic surveying, that integrates u-blox ZED-F9P or ZED-F9R modules. The system offers the benefits of dGNSS technology while being more affordable than other market options. It also avoids relying on phone signals for data storage on a cloud server. This paper presents the SparkFun system, its components, and how it can be assembled to create a dGNSS system for landslide monitoring. The deployment and testing at the Chin Coulee landslide in Alberta are discussed. Over the 6-month testing period, the system achieved millimeter accuracy (up to 14 mm), aligning with the manufacturer's specifications. Estimated system errors were found to be comparable to a commercially available dGNSS system (Ophelia Geocube). Additionally, the system exhibits displacement trends similar to the 2018 Geocube monitoring campaign; however, for future deployments, the robustness of the power supply system and the insulation of the equipment need to be enhanced. Overall, the SparkFun system appears to be a promising and cost-effective alternative for monitoring landslide displacements.
Keywords: dGNSS system; Cost-effective; Landslide; Monitoring (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-024-06536-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:120:y:2024:i:9:d:10.1007_s11069-024-06536-x
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-024-06536-x
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().