EconPapers    
Economics at your fingertips  
 

Enhancing ERA5 precipitation with improved predictor selection for regional climate change assessment

Muhammed Zakir Keskin (), Ahmad Abu Arra (), Ercan Gemici () and Eyüp Şişman ()
Additional contact information
Muhammed Zakir Keskin: Bartın University
Ahmad Abu Arra: Yildiz Technical University
Ercan Gemici: Bartın University
Eyüp Şişman: Yildiz Technical University

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2025, vol. 121, issue 18, No 40, 21810 pages

Abstract: Abstract Accurate regional precipitation projections are critical for effective climate impact assessment and adaptation planning. This study presents a novel methodology for enhancing ERA5 reanalysis precipitation data through optimized predictor selection and statistical downscaling using the Multivariate Adaptive Regression Splines (MARS) algorithm. Four distinct predictor selection scenarios: a full 26-variable model, a reduced 14-variable model based on correlation and physical relevance, a compact 6-variable model emphasizing simplicity, and a station-specific model derived from All Possible Regression (APR), were used along with the MARS algorithm. Predictor variables were selected through traditional correlation analyses (Pearson and Spearman), the APR-based approach, and performance-based evaluation using MARS. The resulting downscaled models were evaluated using different performance metrics, including Kling-Gupta Efficiency (KGE), Nash-Sutcliffe Efficiency (NSE), normalized Root Mean Square Error (nRMSE), and the coefficient of determination (R²). The Western Black Sea Basin in Türkiye, with monthly precipitation data from 32 meteorological stations (1979–2023), was selected as an application to apply the newly proposed dual-stage approach. Results demonstrated that all MARS-enhanced models significantly outperformed the raw ERA5 data, particularly in inland regions where ERA5 performance was initially poor. The APR-based model emerged as the top performer across most stations, while the 6-variable model provided a strong balance between accuracy and simplicity. While the nRMSE initially reached around 77% at some stations, it was significantly reduced to 24.6%, 29%, 26.4%, and 25.1% under the 26-variable, 14-variable, 6-variable, and APR scenarios. The KGE nearly doubled, reaching approximately 0.7–0.9 across all scenarios, confirming the substantial improvement applied to the ERA5 precipitation data. This approach, integrating correlation-based and predictive performance-driven variable selection, proved effective in refining regional precipitation projections. The methodology can be adapted to other regions or climate variables, offering a replicable framework for improving the usability of reanalysis data in hydrological and climate impact studies.

Keywords: Predictor selection; Reanalysis data; MARS algorithm; Regional statistical downscaling; ERA5 precipitation enhancement; Türkiye (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-025-07664-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:121:y:2025:i:18:d:10.1007_s11069-025-07664-8

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-025-07664-8

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-10-25
Handle: RePEc:spr:nathaz:v:121:y:2025:i:18:d:10.1007_s11069-025-07664-8