Where and why do Mei-yu season Heavy-rainfall quantitative precipitation forecasts in Taiwan improve the most using a higher model resolution
Chung-Chieh Wang,
Pi-Yu Chuang () and
Kazuhisa Tsuboki
Additional contact information
Chung-Chieh Wang: National Taiwan Normal University
Pi-Yu Chuang: National Taiwan Normal University
Kazuhisa Tsuboki: Nagoya University
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2025, vol. 121, issue 1, No 16, 383-403
Abstract:
Abstract In this study, quantitative precipitation forecasts (QPFs) for 24-h Mei-yu rainfall at the short range (days 1–3) during May-June of 2012–2014 by a cloud model at two different grid sizes of 2.5 and 5 km are compared using point-to-point categorical measures. With strong topographic control and enhancement, abundant Mei-yu rainfall in Taiwan allows for the use of very high thresholds up to 500 mm (per 24 h), and classification based on observations is also performed to isolate the larger 16% (group A) and the largest 4% of events (group A+) from all samples. Our results show clear improvements in threat scores in heavy rainfall, with the greatest gain (by 0.16) on day 1 at the highest threshold adopted (500 mm) in the largest events of group A+, when a finer grid is used. Improvements are seen at thresholds ≥ 200 mm on day 1, ≥ 100 mm on day 2, and over 50–350 mm on day 3, mainly due to a better capability of the finer model to simulate heavy rainfall in larger events over and near the terrain. The present work provides new insights into the importance and usefulness of increasing model resolution, when and if QPFs of heavy rainfall at precise locations are crucial for hazard mitigation. Similar benefits are not as evident in the literature, likely because the thresholds used were not high enough, the larger events were not isolated, or the impact of topography on rainfall is not as strong and apparent as in Taiwan.
Keywords: Quantitative precipitation forecast; Mei-Yu season; Heavy rainfall; Convective-permitting model; Forecast verification; Taiwan (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-024-06825-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:121:y:2025:i:1:d:10.1007_s11069-024-06825-5
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-024-06825-5
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().