Hydrological responses of three gorges reservoir region (China) to climate and land use and land cover changes
Yixin Sun,
Qiang Zhang (),
Wenlong Song,
Senlin Tang and
Vijay P. Singh
Additional contact information
Yixin Sun: Beijing Normal University
Qiang Zhang: Beijing Normal University
Wenlong Song: China Institute of Water Resources and Hydropower Research
Senlin Tang: Beijing Normal University
Vijay P. Singh: Texas A&M University, College Station
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2025, vol. 121, issue 2, No 14, 1505-1530
Abstract:
Abstract Three Gorges Dam is the largest hydraulic infrastructure in the world, playing a pivotal role in flood mitigation. The hydrological responses of the Three Gorges Reservoir Region (TGRR) to climate change and human activities are unclear, yet critical for the Three Gorges Dam’s flood control and security. We simulated streamflow and water depth by coupling the Variable Infiltration Capacity model and the CaMa-Flood model. Daily discharge at the outlet of TGRR was well modeled with a relative error within 2% and a Nash-Sutcliffe efficiency coefficient of approximately 0.81. However, the flood peak was overestimated by 2.5–40.0% with a peak timing bias ranging from 5 days earlier to 2 days later. Runoff and water depth in the TGRR increased from 2015 to 2018 but decreased during flood seasons. Land use and land cover changes in 2015 (LUCC2015) and 2020 (LUCC2020) were analyzed to quantify their hydrological impacts. During the 2015–2018 period, land use conversion increased in built-up areas (+ 0.6%) and water bodies (+ 0.1%), but decreased in woodland grassland (-0.7%) and cropland (-0.1%). This led to a slight increase in runoff and inflow of less than 4‰ across the TGRR, a 7.70% decrease in average water depth, and a 15.4‰ increase in maximum water depth. Water depths in the TGRR decreased during flood seasons, and increased during non-flood seasons. Increasing water depth was identified in northern TGRR. This study clarifies the historical TGRR’s hydrological features under LUCC and climate changes, aiding regional flood mitigation in the TGRR.
Keywords: Hydrological responses; Water depth; Runoff; Climate changes; LUCC; Three gorges reservoir regions (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-024-06870-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:121:y:2025:i:2:d:10.1007_s11069-024-06870-0
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-024-06870-0
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().