EconPapers    
Economics at your fingertips  
 

Tsunami inundation limit based on probabilistic analysis of runup and inundation distance

Marilym Ramos, Rafael Aránguiz () and María Teresa Bull
Additional contact information
Marilym Ramos: Universidad Católica de la Santísima Concepción
Rafael Aránguiz: Universidad Católica de la Santísima Concepción, Alonso de Ribera
María Teresa Bull: Universidad Católica de la Santísima Concepción

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2025, vol. 121, issue 3, No 13, 2719-2745

Abstract: Abstract Tsunamis are devastating natural hazards that can reach runups of 30 m in coastal areas. One of the most important mitigation measures to save human lives is evacuation, which requires identification of both the inundation area and safe zones. Currently, a ground elevation of 30 m is used to determine safe zones in Chile. However, it has also been used for urban planning, for which the actual tsunami hazard may be overestimated. This research aims to propose a criterion based on probabilistic analysis to determine the tsunami inundation limit, considering both the runup and inundation distance from the shoreline. To this end, a synthetic database of runup and inundation distance from the shoreline was analyzed. First, stochastic earthquake sources were used to simulate tsunami events up to an inundation level in 10 coastal cities. Second, maximum runup and inundation distance were calculated for each tsunami scenario along transect lines perpendicular to the coastline. Finally, three exceedance probabilities of runup – 0.5%, 1%, and 2% in 50 years – were calculated to estimate the runup and inundation distances for each city. The results showed that geomorphology has an important role in runup and inundation distance. In addition, this research introduced new criteria for inundation limit identification, which are more flexible and accurate than the current 30-m ground elevation criterion used for tsunami risk assessment and urban planning. The application of this proposed method would allow local authorities to improve the locations of both critical infrastructure and safe zones.

Keywords: Tsunami; Chile; Runup; Inundation distance; Probabilistic hazard assessment; Numerical simulation (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-024-06916-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:121:y:2025:i:3:d:10.1007_s11069-024-06916-3

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-024-06916-3

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:121:y:2025:i:3:d:10.1007_s11069-024-06916-3