EconPapers    
Economics at your fingertips  
 

Spatial variations of landslide severity with respect to meteorological and soil related factors

Kunal Dutta (), Arkaprabha Poddar (), Asif Iqbal Middya () and Sarbani Roy ()
Additional contact information
Kunal Dutta: Christ (Deemed to be) University
Arkaprabha Poddar: Christ (Deemed to be) University
Asif Iqbal Middya: Jadavpur University
Sarbani Roy: Jadavpur University

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2025, vol. 121, issue 3, No 35, 3267-3291

Abstract: Abstract Landslides, a prevalent natural disaster, wreak havoc on both human lives and vital infrastructure, making them a significant global concern. Their devastating impact is immeasurable, necessitating proactive measures to minimize their occurrence. The ability to accurately forecast the severity of a landslide, including its potential fatality rate and the scale of destruction it may cause, holds tremendous potential for prevention and mitigation to reduce the risk and the damage caused by a landslide to infrastructure and life. In this study, the spatial variability in severity of landslides (in terms of mortality rates) and its dependence on various meteorological, geographical and soil composition has been attempted to be established. To do this, Ordinary Least Squares (global) and various Geographically Weighted (local) models have been employed to observe the varying relation between mortality rates and its various causative factors. Existence of geographical heterogeneity in the relationships is also investigated. The spatial pattern of landslide mortality and its associations with various causative variables in the South Asian Region are investigated and analysed. Through this, insights into targeting of prevention and mitigation measures for landslides based on a given location can be obtained by studying the various forms of heterogeneous spatial associations observed. The outcomes highlight that the local models in the form of Gaussian GWR and Poisson GWR outperform their global counterparts by a huge margin with better R2 and Adj R2 values. In comparison with Poisson GWR and Gaussian GWR, it is seen that Poisson GWR outperforms Gaussian GWR in terms of Mean Absolute Error, Mean Squared Error and Corrected Akaike Information Criterion. Furthermore, several intriguing local relationships patterns are also noted.

Keywords: Landslide; GWR; Spatial heterogeneity; Meteorological factors; Soil variables (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-024-06930-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:121:y:2025:i:3:d:10.1007_s11069-024-06930-5

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-024-06930-5

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:121:y:2025:i:3:d:10.1007_s11069-024-06930-5