EconPapers    
Economics at your fingertips  
 

Mapping landslide susceptibility with the consideration of spatial heterogeneity and factor optimization

Chuanfa Chen (), Yating Liu, Yanyan Li and Fangjia Guo
Additional contact information
Chuanfa Chen: Shandong University of Science and Technology
Yating Liu: Shandong University of Science and Technology
Yanyan Li: Shandong University of Science and Technology
Fangjia Guo: Shandong University of Science and Technology

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2025, vol. 121, issue 4, No 15, 4067-4093

Abstract: Abstract Spatial heterogeneity and information redundancy of landslide influencing factors (LIFs) greatly impair the generalizability of landslide susceptibility mapping (LSM) models. To this end, this paper proposes a new LSM method that takes into account spatial heterogeneity and factor optimization. Firstly, a method based on frequency ratio, coupled with buffer-controlled sampling, is developed to extract non-landslides from the non-landslide area. Then, the study site is divided into several homogeneous areas using agglomerative clustering based on LIFs and spatial locations. Next, the LIFs are optimized in each region based on a combination of variance inflation factor, the Boruta algorithm, and geographical detector so as to avoid information redundancy and noise from both statistical and spatial perspectives. Finally, the random forest (RF) model with the optimized LIFs is used for LSM at the regional scale. Taking 686 landslides and 15 LIFs in Yibin city, China as an example, the proposed method was compared with four state-of-the-art models for LSM including regional RF, global RF with factor optimization, global RF using clustering attribute as one of its inputs, global RF without factor optimization, and global RF using a combination of factor optimization and clustering attribute. Results indicate that compared to the four classical models, the proposed method increases the Accuracy, Recall, Precision, F1 score, and the area under the receiver operating characteristic (AUC) curve by 1.6–5.2%, 2.9–12.5%, 0.1–3.5%, 2.9–7.0%, and 1.8–4.7%, respectively. Additionally, the proposed method can produce more accurate and reasonable landslide susceptibility maps, with an increase in the disaster activity intensity index by 2.7–20.8%. Overall, the proposed method presents a viable alternative for the spatial forecast of landslide susceptibility.

Keywords: Landslide susceptibility; Factor optimization; Spatial heterogeneity; Random forest (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11069-024-06955-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:121:y:2025:i:4:d:10.1007_s11069-024-06955-w

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-024-06955-w

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-05-18
Handle: RePEc:spr:nathaz:v:121:y:2025:i:4:d:10.1007_s11069-024-06955-w