Analysis of the forest fire in the ‘Bohemian Switzerland’ National Park using Landsat-8 and Sentinel-5P in Google Earth Engine
Furkan Yilgan (),
Markéta Miháliková (),
Recep Serdar Kara () and
Mustafa Ustuner ()
Additional contact information
Furkan Yilgan: Czech University of Life Sciences Prague
Markéta Miháliková: Czech University of Life Sciences Prague
Recep Serdar Kara: Czech University of Life Sciences Prague
Mustafa Ustuner: Artvin Coruh University
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2025, vol. 121, issue 5, No 40, 6133-6154
Abstract:
Abstract The recent increase of the air temperature due to the global climate change is considered as one of the important reasons for the wildfires increase in the world, even in areas where the wildfires are not that common. In addition to the various physical damages adversely affecting the ecological balance, harmful gases and solid particles are released into the atmosphere due to wildfires, causing serious health problems. In this study, impacts of the most serious forest fire in modern history of the country lasting 16 days from 23rd of July 2022 in the National Park” Bohemian Switzerland” in the Děčín district, Czech Republic, were investigated using remote sensing satellite datasets by cloud-based Google Earth Engine (GEE) platform. The normalized difference moisture index (NDMI), normalized burn ratio index (NBR), normalized difference vegetation index (NDVI), land surface temperature (LST) and soil moisture index (SMI) were calculated from Landsat-8 Operational Land Imager and Thermal Infrared Sensor (OLI and TIRS) dataset for the dates of 31st October 2021, 18th June 2022, and 31st October 2022. Relationship of the remote sensing indices were calculated to estimate the impacts of the wildfire. Furthermore, distribution of nitrogen dioxide (NO2) was extracted using Sentinel-5P TROPOMI (Tropospheric Monitoring Instrument) to observe changes before and after the forest fire in the study region. The burnt area approximately 13.20 km2 from the total area of 79.28 km2 was detected using different time series of the remote sensing indices in the national park.
Keywords: Climate change; Environmental disaster; Land surface temperature; Remote sensing; Wildfires (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-024-07052-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:121:y:2025:i:5:d:10.1007_s11069-024-07052-8
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-024-07052-8
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().