Multi-hazard vulnerability zone identification using GIS-based fuzzy AHP and MCDM techniques
Atisha Sood (),
K. S. Vignesh () and
V. N. Prapanchan ()
Additional contact information
Atisha Sood: SRM Institute of Science and Technology
K. S. Vignesh: SRM Institute of Science and Technology
V. N. Prapanchan: Anna University
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2025, vol. 121, issue 7, No 30, 8539 pages
Abstract:
Abstract The increasing frequency and intensity of natural disasters due to climate change and anthropogenic influences necessitate multi-hazard assessments in vulnerable urban areas. This study identifies potential multi-hazard zones in the Greater Chennai Corporation, Tamil Nadu, focusing on flood, cyclone, and tsunami risks. The Fuzzy Analytical Hierarchical Process (FAHP)-based Multi-Criteria Decision Making (MCDM) approach was used to determine potential hazard zones by considering individual hazards previously recorded in the study area. The three estimated hazard zones were combined using the Frequency Ratio (FR) method to calculate the Multi-Hazard Index (MHI), which was then categorized to identify probable multi-hazard zones using a geospatial platform. Various hazard-influencing factors, including topographical, meteorological, and inundation parameters, were considered in the analysis. Accuracy assessment, crucial for reliable LULC classification, showed high overall accuracy. The identified multi-hazard zones were classified into five categories: very High (17 sq. km.), High (139 sq. km.), Moderate (203 sq. km.), Low (61 sq. km.), and Very Low (3.8 sq. km.). The Moderate category exhibited the highest occupancy rate at 47.70%, while the Very Low category had the lowest occupancy rate at 0.80%. To evaluate the precision of the FAHP models, an analysis was conducted using the Receiver Operating Characteristic (ROC) curve method. The results revealed an Area Under the Curve (AUC) of 0.85, 0.82, and 0.83 for flood, cyclone, and tsunami, respectively, signifying superior model efficiency. These results provide valuable insights for policymakers in developing robust strategies for multi-hazard mitigation and disaster resilience planning.
Keywords: Multi-hazard; Urban region; FAHP; Frequency ratio; Mutli-hazard index (MHI) (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11069-025-07125-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:121:y:2025:i:7:d:10.1007_s11069-025-07125-2
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-025-07125-2
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().