Relationships between Strong Ground Motion Peak Values and Seismic Loss during the 1999 Chi-Chi, Taiwan Earthquake
Yih-Min Wu (),
Nai-Chi Hsiao and
Ta-Liang Teng
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2004, vol. 32, issue 3, 357-373
Abstract:
A better real-time assessment of earthquake effects (i.e. seismic intensity estimation)is crucial for hazard mitigation. Especially during the aftermath of a disastrous event,significant reduction of loss can usually be realized through timely execution ofemergency response measures. These effects include strong-ground shaking, groundfailure, and their impact on man-made structures. The descriptive Modified Mercalliintensity scale, though still in common use in many poorly instrumented areas of theworld, is out of date in areas of extensive strong-motion instrumentation. It is desirableto place the earthquake intensity scale on a more quantitative basis based on the actualrecorded ground-motion shaking and carefully compiled damage records. In this paper,we investigated the relationships between earthquake loss, intensity and strong motionpeak values, mainly based on the Chi-Chi earthquake. Both the strong-motion peakvalues and the earthquake loss are related. From the results, we found that peak groundacceleration (PGA) and peak acceleration response spectra at 1 s period (1 s Sa) valuesare two parameters that give slightly higher correlation coefficients than other parametersfor earthquake loss analysis. For intensity estimations, the peak ground velocity (PGV)values and 1 s Sa values are better parameters in the high range and PGA is not stable forsmaller earthquakes. Although PGV values give a slightly lower correlation coefficientand larger standard deviation in seismic loss analysis during the Chi-Chi earthquake, itnevertheless gives more reliable instrumental intensity over a broad magnitude range.1 s Sa is a good parameter for both seismic losses and intensity evaluation. We thusconclude that PGV and 1 s Sa are relatively more stable in damage assessment and,at least in the high end, in intensity estimation. We shall incorporate these findings inour real-time earthquake rapid reporting and early warning systems. Copyright Kluwer Academic Publishers 2004
Keywords: seismic hazard mitigation; seismic damage assessment; peak ground motion; earthquake rapid reporting system (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1023/B:NHAZ.0000035550.36929.d0 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:32:y:2004:i:3:p:357-373
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1023/B:NHAZ.0000035550.36929.d0
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().