Effective Emergency Transportation for Saving Human Lives
Yasuko Kuwata and
Shiro Takada
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2004, vol. 33, issue 1, 23-46
Abstract:
To save lives immediately after a catastrophic earthquake occurs, it is essential for an urban transportation system to retain its functional performance in order to carry injured people to hospitals. Recent seismic assessment studies have mostly been based on cost-benefit analyses, carried out in monetary terms that are reasonable for long-term considerations. However, many problems of seismic risk management still remain. For example, attributing a monetary value to a human life is considered impossible. Also, requirements for functioning of a transportation system are different in the period immediately after an earthquake. This paper concentrates on how to assess the importance of an urban transportation system as it relates to saving human life, and what system enhancements should be made to improve performance. This paper proposes a risk assessment method for the functional reliability of a transportation system immediately after an earthquake. In that period, system malfunction adversely affects the saving of lives as a result of time delays when moving injured people to medical facilities. A system dynamics simulation of transporting injured people is incorporated in the method, which uses two assessment approaches to evaluate the differences of cumulative injured people who receive medical care. In deciding on the destination of medical facility in the simulation, two ways of deciding are addressed; one uses information only on the road network, and the other uses information on both road network and hospital availability. Results of an application to an actual target area show the most vulnerable road links and differences of the two decision-making processes. A way to mitigate the loss due to damage to road links is examined. The paper also summarizes future developments in advanced information technology for emergency transportation systems. Copyright Kluwer Academic Publishers 2004
Keywords: emergency transportation; life-saving lifeline; survival ratio; functional performance of network; active city (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://hdl.handle.net/10.1023/B:NHAZ.0000035003.29275.32 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:33:y:2004:i:1:p:23-46
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1023/B:NHAZ.0000035003.29275.32
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().