Analysis of a spatial distribution of landslides triggered by the 2004 Chuetsu earthquakes of Niigata Prefecture, Japan
H. Wang (),
K. Sassa and
W. Xu
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2007, vol. 41, issue 1, 43-60
Abstract:
On October 23, 2004, a series of powerful earthquakes with a maximum M w = 6.6 located near the western coast of northern Honshu struck parts of northern Japan, particularly Niigata Prefecture; these earthquakes were known as the Chuetsu event. Thousands of landslides, as a secondary geotechnical hazard associated with these earthquakes, were triggered over a broad area; these landslides were of almost all types. The purpose of this study was to detect correlations between landslide occurrence with geologic and geomorphologic conditions, slope geometry, and earthquake parameters using two indexes based on Geographic Information Systems (GIS). In the study area, the landslide–area ratio (LAR), which is defined as the percentage of the area affected by landslides, was 2.9%, and the landslide concentration (LC), the number of landslides per square kilometer, was 4.4 landslides/km 2 , which is much more than other reported cases of seismic activity with the same magnitude. This was possibly due to heavy rainfall just before the Chuetsu earthquakes. Statistical analyses show that LAR has a positive correlation with slope steepness and distance from the epicenter, while LC is inversely correlated with distance from the epicenter. The Wanazu Formation had the most concentrated landslide activity, followed by the Kawaguchi, Ushigakubi, Shiroiwa and Oyama Formations, although the Wanazu Formation occupied only 4.5% of the total area of geological units. With 8.2% of the area affected by seismic landslides, the Kawaguchi Formation had the highest LAR. It was followed by the Shiroiwa, Ushigakubi and Wanazu Formations with LAR ranging from 4.6% to 6.0%. For lots of geological subunits, landslides are more frequent in a range of slope angles between 15° and 40°. The susceptibility to landsliding of each geologic unit was thus evaluated to correlate with slope steepness. It was also noted that the effects of the earthquakes were made far worse by antecedent rainfall conditions induced by a␣typhoon, and further research emphasizing the role of antecedent rainfall was discussed. Copyright Springer Science+Business Media B.V. 2007
Keywords: Chuetsu earthquakes; Seismic landslides; Statistical analysis; Geographic Information Systems (GIS) (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-006-9009-x (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:41:y:2007:i:1:p:43-60
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-006-9009-x
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().