A GIS-based methodology for hazard mapping of small volume pyroclastic density currents
G. Toyos (),
P. Cole,
A. Felpeto and
J. Martí
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2007, vol. 41, issue 1, 99-112
Abstract:
We present here a methodology implemented within a geographical information system (GIS) for hazard mapping of small volume pyroclastic density currents (PDCs). This technique is implemented as a set of macros written in Visual Basic for Applications (VBA) that run within GIS-software (i.e. ArcGIS). Based on the energy line concept, we calibrated an equation that relates the volume (V) and the mobility (ΔH/L) of single PDCs using data from Soufrière Hills volcano (Montserrat) and Arenal volcano (Costa Rica). Maximum potential run-outs can be predicted with an associated uncertainty of about 30%. Also based on the energy line concept and with data from Soufrière Hills volcano and Mt. St. Helens (USA), we were able to calibrate an equation that predicts the flow velocity as a function of the vertical distance between the energy line and the ground surface (Δh). Velocities derived in this way have an associated uncertainty of 3 m s −1 . We wrote code to implement these equations and allow the automatic mapping of run-out and velocity with the inputs being (i) the height and location of the vent (ii) the flow volume and (iii) a digital elevation model (DEM) of the volcano. Dynamic pressure can also be estimated and mapped by incorporating the density of the pyroclastic density current (PDC). This computer application allows the incorporation of uncertainties in the location of the vent and of statistical uncertainties expressed by the 95% confidence limits of the regression model. We were able to verify predictions by the proposed methodology with data from Unzen volcano (Japan) and Mayon volcano (The Philippines). The consistencies observed highlight the applicability of this approach for hazard mitigation and real-time emergency management. Copyright Springer Science+Business Media B.V. 2007
Keywords: Pyroclastic density current; Hazard mapping; GIS; Run-out; Velocity; Dynamic pressure; Volume; Energy line; Mobility (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-006-9026-9 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:41:y:2007:i:1:p:99-112
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-006-9026-9
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().