EconPapers    
Economics at your fingertips  
 

Limitations of real-time models for forecasting river flooding from monsoon rainfall

Muthiah Perumal () and Bhabagrahi Sahoo

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2007, vol. 42, issue 2, 415-422

Abstract: Very intense rainfall during the southwest and northeast monsoons causes severe river flooding in India. Some traditional techniques used for real-time forecasting of flooding involve the relationship between effective rainfall and direct surface runoff, which simplifies the complex interactions between rainfall and runoff processes. There are, however, serious problems in deducing these variables in real time, so it is highly desirable to have a real-time flood forecasting model that would directly relate the observed discharge hydrograph to the observed rainfall. The storage routing model described by Baba and Hoshi ( 1997 ), Tanaka et al. ( 1997 ), and Baba et al. ( 2000 ), and a simplified version of this model, have been used to compute observed river discharge directly from observed hourly rainfall. This method has been used to study rainfall–runoff data of the Ajay River Basin in eastern India. Five intense rainfall events of this basin were studied. Our results showed that the Nash–Sutcliffe efficiency of discharge prediction for these five events was 98.6%, 94.3%, 86.9%, 85.6%, and 67%. The hindcast for the first two events is regarded as completely satisfactory whereas for the next two events it is deemed reasonable and for the fifth it is unsatisfactory. It seems the models will yield accurate hindcast if the rainfall is uniform over the drainage basin. When the rainfall is not uniform the performance of the model is unsatisfactory. In future this problem can, in principle, be corrected by using a weighted amount if rainfall is based upon multiple rain-gauge observations over the drainage basin. This would provide some measure of the dispersion in the rainfall. The model also seems unable to simulate flooding events with multiple peaks. Copyright Springer Science+Business Media, Inc. 2007

Keywords: River floods; Routing model; Real-time forecasting; Observed hourly rainfall; Multiple peaks; Non-uniformity of rainfall (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-006-9082-1 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:42:y:2007:i:2:p:415-422

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-006-9082-1

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:42:y:2007:i:2:p:415-422