The emerging role of satellite rainfall data in improving the hydro-political situation of flood monitoring in the under-developed regions of the world
Faisal Hossain (),
Nitin Katiyar,
Yang Hong () and
Aaron Wolf ()
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2007, vol. 43, issue 2, 199-210
Abstract:
The systematic decline of in situ networks for hydrologic measurements has been recognized as a crucial limitation to advancing hydrologic monitoring in medium to large basins, especially those that are already sparsely instrumented. As a collective response, sections of the hydrologic community have recently forged partnerships for the development of space-borne missions for cost-effective, yet global, hydrologic measurements by building upon the technological advancements since the last two decades. In this article, we review the state-of-the-art on flood monitoring in medium and large ungauged basins where satellite remote sensing can facilitate development of a cost-effective mechanism. We present our review in the context of the current hydro-political situation of flood monitoring in flood-prone developing nations situated in international river basins (IRBs). Given the large number of such basins and the difficulty in acquisition of multi-faceted geophysical data, we argue that the conventional data-intensive implementation of physically based hydrologic models that are complex and distributed is time-consuming for global assessment of the utility of proposed global satellite hydrologic missions. A more parsimonious approach is justified at the tolerable expense of accuracy before such missions begin operation. Such a parsimonious approach can subsequently motivate the identified international basins to invest greater effort in conventional and detailed hydrologic studies to design a prototype flood forecasting system in an effort to overcome the hydro-political hurdles to flood monitoring. Through a modeling exercise involving an open-book watershed concept, we demonstrate the value of a parsimonious approach in understanding the utility of NASA-derived satellite rainfall products. It is critical now that real-world operational flood forecasting agencies in the under-developed world come forward to collaborate with the research community in order to leverage satellite rainfall data for greater societal benefit for inhabitants in IRBs. Copyright Springer Science+Business Media, Inc. 2007
Keywords: Flood monitoring; Satellite remote sensing; Precipitation; International river basins; Forecasting; Hydrologic modeling; Decision support tools (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-006-9094-x (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:43:y:2007:i:2:p:199-210
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-006-9094-x
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().