Contribution of the SISCam Web-based GIS to the seismotectonic study of Campania (Southern Apennines): an example of application to the Sannio-area
Rosa Nappi (),
Giuliana Alessio,
Giovanni Bronzino,
Carlo Terranova and
Giuseppe Vilardo
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2008, vol. 45, issue 1, 73-85
Abstract:
In this article the implementation and potential of the Seismotectonic Information System of the Campania Region (SISCam) are described, in particular an application of this Web-based GIS system to the seismotectonic analysis of the Sannio area (Southern Apennines) is performed. WEB-GIS technologies greatly contribute to both the environmental monitoring and the disaster management of areas affected by high natural risks. Specifically the SISCam system has been developed with the aim of providing easy access and fast diffusion, through Internet technology, of the most significant geological, geophysical, and territorial data relative to the Campania Region. The Sannio area has been selected as our application example because it is among the most active seismic regions in Italy. This portion of the Southern Apennines which was hit by the June 5, 1688 strong earthquake (M W = 6.7, CPTI 1999) and by some low- and moderate-energy seismic sequences (1990–1992, 1997), is characterized by a complex inherited tectonic setting and low-tectonic deformation rates that hide the seismogenic sources position. Since this case study turned out to be complicated, the use of the SIScam WEB-GIS has become indispensable because it allowed us to visualize, integrate and analyze all the data available, in order to obtain an accurate and direct picture of the seismotectonic setting of the area. Moreover, a different approach of data analysis was necessary, due to the lack of up-to-date neotectonic and structural data; therefore, the operation of this GIS system enabled us to process and generate some original informative layers, through image analysis, such as new structural lineaments represented on a map of the potential active faults of the area, which has been the final result of our application, as a contribution to new knowledge about the local seismic risk parameters. Copyright Springer Science+Business Media B.V. 2008
Keywords: Web-based GIS; Seismotectonic data; Image processing; Internet technology (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-007-9170-x (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:45:y:2008:i:1:p:73-85
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-007-9170-x
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().