A review of natural sinkhole phenomena in Italian plain areas
G. Caramanna,
G. Ciotoli and
S. Nisio ()
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2008, vol. 45, issue 2, 145-172
Abstract:
Italian sinkholes, which are mainly related to karst phenomena (i.e., solution sinkholes, collapse sinkholes, etc.), are widespread along the Apennine ridge and in pedemontane areas where there are carbonatic bedrock outcrops. However, other collapses, which seem unrelated to karst dissolution, have been identified in plain areas with a thick sedimentary cover over buried bedrock. The main goal of this work is to study the geological, geomorphological, and structural setting of these areas to identify the possible mechanism of the generation and evolution of these collapses. About 750 cases were identified by research based on historical archives, specific geological literature, and information from local administrations. Geological, geomorphological, and hydro-geochemical surveys were conducted in 300 cases, supported by literature, borehole, and seismic data. A few examples were discarded because they could be ascribed to karst dissolution, volcanic origin (i.e., maar), or anthropogenic causes. Field studies regarding the other 450 cases are in progress. These cases occur along the Tyrrhenian margin (Latium, Abruzzo, Campania, Tuscany) in tectonic, coastal, and alluvial plains close to carbonate ridges. These plains are characterized by the presence of pressurized aquifers in the buried bedrock, overlaid by unconsolidated sediments (i.e., clay, sands, pyroclastic deposits, etc.). The majority of these collapses are aligned along regional master and seismogenetic faults. About 50% of the studied cases host small lakes or ponds, often characterized by highly mineralized springs enriched with CO 2 and H 2 S. The Periadriatic margin does not seem to be affected by these phenomena, and only a few cases have been found in Sicily, Sardinia, and Liguria. The obtained scenarios suggests that this type of collapse could be related to upward erosion through vertical conduits (i.e., deep faults) caused by deep piping processes whose erosive strength is increased by the presence of acidic fluids. In order to distinguish these collapses from typical karst dissolution phenomena, they are defined as deep piping sinkholes (DPS). Copyright Springer Science+Business Media B.V. 2008
Keywords: Sinkholes; Deep piping; Sinkhole prone areas; Natural hazards in Italy; Karst (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-007-9165-7 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:45:y:2008:i:2:p:145-172
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-007-9165-7
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().