EconPapers    
Economics at your fingertips  
 

Structural elements of the Makran region, Oman sea and their potential relevance to tsunamigenisis

Mohammad Mokhtari (), Iraj Abdollahie Fard and Khaled Hessami

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2008, vol. 47, issue 2, 185-199

Abstract: The character of convergence along the Arabian–Iranian plate boundary changes radically eastward from the Zagros ranges to the Makran region. This appears to be due to collision of continental crust in the west, in contrast to subduction of oceanic crust in the east. The Makran subduction zone with a length of about 900 km display progressively older and highly deformed sedimentary units northward from the coast, together with an increase in elevation of the ranges. North of the Makran ranges are large subsiding basins, flanked to the north by active volcanoes. Based on 2D seismic reflection data obtained in this study, the main structural provinces and elements in the Gulf of Oman include: (i) the structural elements on the northeastern part of the Arabian Plate and, (ii) the Offshore Makran Accretionary Complex. Based on detailed analysis of these data on the northeastern part of the Arabian Plate five structural provinces and elements—the Musendam High, the Musendam Peneplain, the Musendam Slope, the Dibba Zone, and the Abyssal Plain have been identified. Further, the Offshore Makran Accretionary Complex shown is to consist Accretionary Prism and the For-Arc Basin, while the Accretionary Prism has been subdivided into the Accretionary Wedge and the Accreted/Colored Mélange. Lastly, it is important to note that the Makran subduction zone lacks the trench. The identification of these structural elements should help in better understanding the seismicity of the Makran region in general and the subduction zone in particular. The 1945 magnitude 8.1 tsunamigenic earthquake of the Makran and some other historical events are illustrative of the coastal region’s vulnerability to future tsunami in the area, and such data should be of value to the developing Indian Ocean Tsunami Warning System. Copyright Springer Science+Business Media B.V. 2008

Keywords: Makran; Tsunami wave heights; Subduction zone; Accretionary margin; Dibba Fault Zone; Indian Ocean; Seismic reflection (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-007-9208-0 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:47:y:2008:i:2:p:185-199

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-007-9208-0

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:47:y:2008:i:2:p:185-199