Prediction of snowmelt floods with a distributed hydrological model using a physical snow mass and energy balance approach
H. Zeinivand () and
F. De Smedt
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2010, vol. 54, issue 2, 468 pages
Abstract:
Modeling snowmelt is important for water resources management and the assessment of spring snowmelt flood risk. The objective of this study was to develop a physically based module for the WetSpa model to improve the simulation of snowmelt processes. The improved model is applied, calibrated, and verified on the Hornad watershed, upstream of Margecany, Western Carpathians, Slovakia, with 10 years of observed daily precipitation and air temperature, and estimated daily potential evaporation. Daily discharge data of the gauging station at Margecany is used for model calibration and verification. The model proves to predict accurately snow accumulation and snowmelt floods, although the parameters of the snow simulation module are preset and not adjusted by model calibration. In order to show the performance of the model, two particular snow accumulation and melt periods are discussed in detail. The relevant terms of the snowpack mass and energy balances as well as the related heat and mass transport processes are discussed. The study demonstrates that accurate snowmelt prediction based on a physically energy budget approach is possible with controlling parameters that do not need any calibration. Copyright Springer Science+Business Media B.V. 2010
Keywords: Snowmelt; Hydrological modeling; Snow energy balance; WetSpa model; Hornad river (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-009-9478-9 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:54:y:2010:i:2:p:451-468
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-009-9478-9
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().