A new total volume model of debris flows with intermittent surges: based on the observations at Jiangjia Valley, southwest China
N. Chen (),
Ch. Yang,
W. Zhou,
F. Wei,
Z. Li,
D. Han and
G. Hu
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2011, vol. 56, issue 1, 37-57
Abstract:
Debris flow with intermittent surges is a major natural hazard. Accurate estimation of the total volume of debris flow is a challenge for academic researchers and engineering practitioners. This paper has proposed a new model for the total volume estimation based on 15 years of observations in Jiangjia Valley, China, from 1987 to 2004. The model uses two input variables: debris flow moving time and average surge peak discharge. The Weibull distribution formula is adopted to describe the relationship between the debris flow surge peak discharge and its relative frequency. By integrating the Weibull function and two-point curve fitting, the relationship between the maximum discharge and average surge peak discharge can be established. The total debris flow volume is linked with the debris flow moving time and the average peak discharge. With statistical regression, the debris flow moving time is derived from the debris flow total time. The proposed model has fitted very well with the validation data and outperformed the existing models. This study has provided a new and more accurate way for estimating the total volume of debris flows with intermittent surges in engineering practice. Copyright Springer Science+Business Media B.V. 2011
Keywords: Debris flow with intermittent surges; Total volume; Jiangjia Valley (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-010-9548-z (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:56:y:2011:i:1:p:37-57
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-010-9548-z
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().