Quantitative assessment and spatial characteristics analysis of agricultural drought vulnerability in China
Jianjun Wu (),
Bin He (),
Aifeng Lü,
Lei Zhou,
Ming Liu and
Lin Zhao
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2011, vol. 56, issue 3, 785-801
Abstract:
In this study, the spatial characteristics of agricultural drought vulnerability in China were investigated using a GIS-based agricultural drought vulnerability assessment model, which was constructed by selecting three agricultural drought vulnerability factors. Seasonal crop water deficiency, available soil water-holding capacity and irrigation were identified as the main indicators of agricultural drought vulnerability in China. The study showed that the distribution of seasonal crop moisture deficiency showed significant differentiation in both north–south and east–west directions, and the agricultural drought vulnerability presented a similar trend. At a regional scale, southern and eastern China typically has a low- and moderate-vulnerability to drought, while high and very high vulnerability to agricultural drought is observed in northern and western China. In terms of China’s agricultural regions, the central part of the southwest region, the area between the southern Huang-Huai-Hai region and the northern part of the Middle and lower reaches of the Yangtze River region, and the northeast region are the areas of low agricultural drought vulnerability in China, while areas of high agricultural drought vulnerability are mainly located in the Inner Mongolia, Loess Plateau and Gan-Xin regions. Due to differences in the physical and social–economic conditions within the agricultural areas, vulnerability to agricultural drought exhibits substantial variability both between different agricultural regions and within the same region. The methodology of grid-cell-based agricultural drought vulnerability assessment, developed in this study, provides a foundation for better description of the differences in regional and even smaller scale. Copyright Springer Science+Business Media B.V. 2011
Keywords: Agricultural drought; Vulnerability; Spatial characteristics; Grid; GIS (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-010-9591-9 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:56:y:2011:i:3:p:785-801
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-010-9591-9
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().