EconPapers    
Economics at your fingertips  
 

Aftershock sequences of two great Sumatran earthquakes of 2004 and 2005 and simulation of the minor tsunami generated on September 12, 2007 in the Indian Ocean and its effect

R. Jaiswal, A. Singh (), B. Rastogi and T. Murty

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2011, vol. 57, issue 1, 7-26

Abstract: We present the seismic energy, strain energy, frequency–magnitude relation (b-value) and decay rate of aftershocks (p-value) for the aftershock sequences of the Andaman–Sumatra earthquakes of December 26, 2004 (M w 9.3) and March 28, 2005 (M w 8.7). The energy released in aftershocks of 2004 and 2005 earthquake was 0.135 and 0.365% of the energy of the respective mainshocks, while the strain release in aftershocks was 39 and 71% for the two earthquakes, respectively. The b-value and p-value indicate normal value of about 1. All these parameters are in normal range and indicate normal stress patterns and mechanical properties of the medium. Only the strain release in aftershocks was considerable. The fourth largest earthquake in this region since 2004 occurred in September 2007 off the southern coast of Island of Sumatra, generating a relatively minor tsunami as indicated by sea level gauges. The maximum wave amplitude as registered by the Padang, tide gauge, north of the earthquake epicenter was about 60 cm. TUNAMI-N2 model was used to investigate ability of the model to capture the minor tsunami and its effect on the eastern Indian Coast. A close comparison of the observed and simulated tsunami generation, propagation and wave height at tide gauge locations showed that the model was able to capture the minor tsunami phases. The directivity map shows that the maximum tsunami energy was in the southwest direction from the strike of the fault. Since the path of the tsunami for Indian coastlines is oblique, there were no impacts along the Indian coastlines except near the coast of epicentral region. Copyright Springer Science+Business Media B.V. 2011

Keywords: Aftershock; Seismic characteristics; Energy release; Tsunami simulation; Tsunami propagation; Wave height; Tide gauge; BPR (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-010-9637-z (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:57:y:2011:i:1:p:7-26

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-010-9637-z

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:57:y:2011:i:1:p:7-26