EconPapers    
Economics at your fingertips  
 

Flood monitoring, mapping and assessing capabilities using RADARSAT remote sensing, GIS and ground data for Bangladesh

Roxana Hoque (), Daichi Nakayama, Hiroshi Matsuyama and Jun Matsumoto

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2011, vol. 57, issue 2, 525-548

Abstract: Remote sensing is the most practical method available to managers of flood-prone areas for quantifying and mapping flood impacts. This study explored large inundation areas in the Maghna River Basin, around the northeastern Bangladesh, as determined from passive sensor LANDSAT data and the cloud-penetrating capabilities of the active sensors of the remote imaging microwave RADARSAT. This study also used passive sensor LANDSAT wet and dry images for the year 2000. Spatial resolution was 30 m by 30 m for comparisons of the inundation area with RADARSAT images. RADARSAT images with spatial resolution of 50 m by 50 m were used for frequency analysis of floods from 2000 to 2004. Time series images for 2004 were also used. RADARSAT remote sensing data, GIS data, and ground data were used for the purpose of flood monitoring, mapping and assessing. A supervised classification technique was used for this processing. They were processed for creating a maximum water extent map and for estimating inundation areas. The results of this study indicated that the maximum extent of the inundation area as estimated using RADARSAT satellite imaging was about 29, 900.72 km 2 in 2004, which corresponded well with the heavy rainfall around northeast region, as seen at the Bhairab Bazar station and with the highest water level of the Ganges–Brahmaputra–Meghna (GBM) Rivers. A composite of 5 years of RADARSAT inundation maps from 2000 to 2004, GIS data, and damage data, was used to create unique flood hazard maps. Using the damage data for 2004 and the GIS data, a set of damage maps was also created. These maps are expected to be useful for future planning and flood disaster management. Thus, it has been demonstrated that RADARSAT imaging data acquired over the Bangladesh have the ability to precisely assess and clarify inundation areas allowing for successful flood monitoring, mapping and disaster management. Copyright Springer Science+Business Media B.V. 2011

Keywords: Monitoring; Mapping; Assessing; LANDSAT; RADARSAT; GIS (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-010-9638-y (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:57:y:2011:i:2:p:525-548

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-010-9638-y

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:57:y:2011:i:2:p:525-548