EconPapers    
Economics at your fingertips  
 

Impact of stratification on internal waves and differential wearing of thermal inversions on the east coast of India

A. Rao, S. Babu (), P. Murty and Smita Pandey

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2011, vol. 57, issue 3, 577-595

Abstract: The surface layers of the Bay of Bengal along the east coast of India exhibit intricate stratification owing to the differential distribution of freshwaters. The winter (January–February) cooling of the salinity-induced stable layers results in the development of thermal inversions that deteriorate toward the end of the season. The study focuses on the behavior of the thermal inversions in the light of the variable stratification and the monsoon imposed reversing coastal current. To address the associated processes, a three-dimensional Princeton Ocean Model is applied for the east coast of India, and numerical experiments carried out to study the means by which the thermal inversions tend to perish with the passage of winter. The model domain with variable curvilinear grid uses input fields that comprise realistic bathymetry and initial temperature/salinity conforming to winter/specified stratification. The surface forcing comprises wind stress and diurnal pattern air–sea heat fluxes. The body forcing is derived from the periodic tidal elevations at the open boundaries. It has been found that the thermal inversions tend to sustain as the equator-ward flowing East India Coastal Current (EICC) traps the cool low saline waters between Paradip and Kakinada. The current off Paradip is weak and variable and is not a part of EICC. Consequently, in the absence of replenishment of cool and freshsurface waters, the temperature/salinity gradients get eroded steadily. No thermal inversions are noticed south of Kakinada because of relatively weak current with diminished vertical salinity gradient. As the nature of stratification encountered in the bay is highly variable due to diverse reasons, the behavior of internal waves under different stratification scenarios is also addressed. Numerical experiments indicate that the energy/amplitude of the internal waves are comparable in the surface layers for any stratification, where as it is certain orders exalted in the deeper waters of the strong stratification scenario. Further, it is found that the energies and pattern of the temperature oscillations conform to the nature of mixed tide at the corresponding latitude. The underneath stratification is found to be more responsible for the generation of internal waves compared to the local stratification. This implies that the body forcing emanating from below is the cardinal contributor for the generation of internal waves. The numerical experiment with a flat and uniform bottom showing weak manifestation of internal waves endorses the same. This connotes that the continental slopes are an effective generator of the internal waves and the energy flux conversion of the barotropic tide to internal waves seems to be heavily dependent on the shoaling bottom. Copyright Springer Science+Business Media B.V. 2011

Keywords: Internal waves; Stratification; Bathymetry; Tide (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-010-9616-4 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:57:y:2011:i:3:p:577-595

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-010-9616-4

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:57:y:2011:i:3:p:577-595