Evaluation of TRIGRS (transient rainfall infiltration and grid-based regional slope-stability analysis)’s predictive skill for hurricane-triggered landslides: a case study in Macon County, North Carolina
Zonghu Liao,
Yang Hong (),
Dalia Kirschbaum,
Robert Adler,
Jonathan Gourley and
Rick Wooten
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2011, vol. 58, issue 1, 325-339
Abstract:
The key to advancing the predictability of rainfall-triggered landslides is to use physically based slope-stability models that simulate the transient dynamical response of the subsurface moisture to spatiotemporal variability of rainfall in complex terrains. TRIGRS (transient rainfall infiltration and grid-based regional slope-stability analysis) is a USGS landslide prediction model, coded in Fortran, that accounts for the influences of hydrology, topography, and soil physics on slope stability. In this study, we quantitatively evaluate the spatiotemporal predictability of a Matlab version of TRIGRS (MaTRIGRS) in the Blue Ridge Mountains of Macon County, North Carolina where Hurricanes Ivan triggered widespread landslides in the 2004 hurricane season. High resolution digital elevation model (DEM) data (6-m LiDAR), USGS STATSGO soil database, and NOAA/NWS combined radar and gauge precipitation are used as inputs to the model. A local landslide inventory database from North Carolina Geological Survey is used to evaluate the MaTRIGRS’ predictive skill for the landslide locations and timing, identifying predictions within a 120-m radius of observed landslides over the 30-h period of Hurricane Ivan’s passage in September 2004. Results show that within a radius of 24 m from the landslide location about 67% of the landslide, observations could be successfully predicted but with a high false alarm ratio (90%). If the radius of observation is extended to 120 m, 98% of the landslides are detected with an 18% false alarm ratio. This study shows that MaTRIGRS demonstrates acceptable spatiotemporal predictive skill for landslide occurrences within a 120-m radius in space and a hurricane-event-duration (h) in time, offering the potential to serve as a landslide warning system in areas where accurate rainfall forecasts and detailed field data are available. The validation can be further improved with additional landslide information including the exact time of failure for each landslide and the landslide’s extent and run out length. Copyright Springer Science+Business Media B.V. 2011
Keywords: Landslide; Hurricane; Hazard prediction; LiDAR (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-010-9670-y (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:58:y:2011:i:1:p:325-339
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-010-9670-y
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().