Site response studies in Agartala Urban agglomeration
S. Chowdhuri (),
O. Singh and
R. Majumdar ()
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2011, vol. 59, issue 1, 329-345
Abstract:
A systematic investigation using digital microearthquake recorders with short period SS-1 seismometers, covering 76 sites in and around Agartala city, has been carried out for site response (SR) studies in the area. In the northern part of the area, SR varies from 1.15 to 1.85 corresponding to peak frequency 0.76 to 0.93 Hz where soil is mostly semi-consolidated and stiffer than recent Quaternary deposits (Haora River formation). In the southern part of the area, SR varies from 1.12 to 2.42 corresponding to peak frequency from 0.71 to 0.85 Hz within the Dupitila formation (early Quaternary). It is observed that estimated SR from H/V increases from edges to middle of the Haora River valley and impedance contrast fallows the similar trend. This reflects that site response by H/V is influenced by impedance contrast, whereas computed amplification from 1-D model shows opposite trend. The maximum amplification at fundamental frequency of resonance, 1.04 Hz estimated from H/V by near to BH-7, is 2.5 times greater than the impedance contrast/ratio derived from 1-D model for same location. Relationship between resonance frequency and depth was obtained by applying quarter wavelength and Bard ( 2000 ) methodologies, which shows linearity, whereas H/V shows its nonlinearity characteristic in soil across the valley part of Haora River. Shear wave velocities, and subsequently, SPT index and factor of safety (by cyclic stress approach) were estimated from geotechnical parameters. Vs30 and site response data were used in this study for getting a first hand information about soil stiffness condition in the area. The estimation of SPT index and factor of safety could be a useful tool for delineating liquefied and none liquefied zones at various depth levels, especially where water table exists at a very shallow level. The expected liquefiable zone was observed at depths varying from 6–25 m beneath the soil bearing zones where percentage of fines is estimated to be more than 35% for the area. This knowledge about subsurface soil characteristics will be useful for the civil engineers/city planners, which can be taken into account at the time of constructing earthquake-resistant structures in the area. Copyright Springer Science+Business Media B.V. 2011
Keywords: Site response; Peak frequency; Peak amplification; Standard penetration test; Liquefaction (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-011-9759-y (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:59:y:2011:i:1:p:329-345
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-011-9759-y
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().