Maize yield forecasting for Zimbabwe farming sectors using satellite rainfall estimates
Desmond Manatsa (),
Innocent Nyakudya,
Geoffry Mukwada and
Herbet Matsikwa
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2011, vol. 59, issue 1, 447-463
Abstract:
Southern Africa rainfall station network is suffering from an unfortunate serious decline while climate-related food insecurity is worsening. In the current work, we demonstrate the possibility of exploiting the complementary roles that remote sensing, modeling, and geospatial data analysis can play in forecasting maize yield using data for the growing seasons from 1996/1997 to 2003/2004. Satellite-derived point-specific rainfall estimates were input into a crop water balance model to calculate the Water Requirement Satisfaction Index (WRSI). When these WRSI values were regressed with historical yield data, the results showed that relatively high skill yield forecasts can be made even when the crops are at their early stages of growth and in areas with sparse or without any ground rainfall measurements. Inferences about the yield at national level and small-scale commercial farming sector (SSCF) sector can be made at confidence levels above 99% from the second dekad of February. However, the most unstable models are those for the communal farming sectors whose inferences for yield forecast can only be made above the 95% confidence level from the end of February, after having recovered from a state of complete breakdown two dekads earlier. The large-scale commercial farming (LSCF) sector has generally the weakest fitting, but it is usable from the first dekad of February to the end of the rainy season. Validation of the national yield models using independent data set shows that an early estimation of maize yield is quite feasible by the use of the WRSI. Copyright Springer Science+Business Media B.V. 2011
Keywords: Satellite rainfall estimates; Water Requirement Satisfaction Index; Maize yield forecasting; Regression model; Zimbabwe farming sectors (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-011-9765-0 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:59:y:2011:i:1:p:447-463
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-011-9765-0
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().