EconPapers    
Economics at your fingertips  
 

Evaluating roadside rockmasses for rockfall hazards using LiDAR data: optimizing data collection and processing protocols

Matthew Lato, Mark Diederichs (), D. Hutchinson and Rob Harrap

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2012, vol. 60, issue 3, 864 pages

Abstract: Highways and railroads situated within rugged terrain are often subjected to the hazard of rockfalls. The task of assessing roadside rockmasses for potential hazards typically involves an on-site visual investigation of the rockmass by an engineer or geologist. At that time, numerous parameters associated with discontinuity orientations and spacing, block size (volume) and shape distributions, slope geometry, and ditch profile are either measured or estimated. Measurements are typically tallied according to a formal hazard rating system, and a hazard level is determined for the site. This methodology often involves direct exposure of the evaluating engineer to the hazard and can also create a potentially non-unique record of the assessed slope based on the skill, knowledge and background of the evaluating engineer. Light Detection and Ranging (LiDAR)–based technologies have the capability to produce spatially accurate, high-resolution digital models of physical objects, known as point clouds. Mobile terrestrial LiDAR equipment can collect, at traffic speed, roadside data along highways and rail lines, scanning continual distances of hundreds of kilometres per day. Through the use of mobile terrestrial LiDAR, in conjunction with airborne and static systems for problem areas, rockfall hazard analysis workflows can be modified and optimized to produce minimally biased, repeatable results. Traditional rockfall hazard analysis inputs include two distinct, but related sets of variables related to geological or geometric control. Geologically controlled inputs to hazard rating systems include kinematic stability (joint identification/orientation) and rock block shape and size distributions. Geometrically controlled inputs include outcrop shape and size, road, ditch and outcrop profile, road curvature and vehicle line of sight. Inputs from both categories can be extracted or calculated from LiDAR data, although there are some limitations and special sampling and processing considerations related to structural character of the rockmass, as detailed in this paper. Copyright Springer Science+Business Media B.V. 2012

Keywords: Lidar; Rockfall; Rockmass; Characterization; Risk; Hazard (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-011-9872-y (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:60:y:2012:i:3:p:831-864

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-011-9872-y

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:60:y:2012:i:3:p:831-864